Journal of Plant Diseases and Protection

, Volume 121, Issue 1, pp 32–40 | Cite as

Differential sensitivity of locally naturalized Panicum species to HPPD- and ALS-inhibiting herbicides

  • Benny De Cauwer
  • Tim Geeroms
  • Sofie Claerhout
  • Robert Bulcke
  • Dirk Reheul


Panicum schinzii (Transvaal millet), P. dichotomiflorum (Fall panicum) and P. capillare (Witchgrass) are alien panicoid grasses that have gradually spread and are now locally naturalized in corn fields in Belgium. One of the possible reasons for their expansion in corn fields might be a lower sensitivity to post-emergence herbicides acting against panicoid grasses, in particular those inhibiting 4-hydroxyphenyl pyruvate dioxygenase (HPPD) and acetolactate synthase (ALS). Dose-response pot experiments were conducted in the greenhouse to evaluate the effectiveness of five HP-PD-inhibiting herbicides (sulcotrione, mesotrione, isoxaflu-tole, topramezone, tembotrione) and two ALS-inhibiting herbicides (nicosulfuron, foramsulfuron) for controlling populations of P. schinzii, P. dichotomiflorum and P. capillare (all naturalized Belgian populations except for P. capillare). In another dose-response pot experiment, sensitivity of five local P. dichotomiflorum populations to HPPD-inhibitors and nicosulfuron was investigated. Finally, the influence of growth stage at time of herbicide application on efficacy of topramezone and nicosulfuron for Panicum control was evaluated. Large interspecific differences in sensitivity to HPPD-inhibiting herbicides were observed. Panicum schinzii was sensitive to tembotrione but moderately sensitive to to-pramezone and poorly sensitive to mesotrione and sulcotrione. However, P. dichotomiflorum was sensitive to mesotrione and topramezone but moderately sensitive to tembotrione. All Panicum species were sensitive to low doses of nic-osulfuron and foramsulfuron. Naturalized P. dichotomiflorum populations exhibited differential herbicide sensitivity profiles. All species tested showed a progressive decrease in sensitivity to topramezone and nicosulfuron with seedling age. A satisfactory post-emergence control of Panicum species in the field will require appropriate choice of herbicide and dose, as well as a more timely application (i.e. before weeds reach the four leaves stage).

Key words

Growth stage herbicide sensitivity panicoid grasses sulfonylurea herbicides triketone herbicides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldrich RJ & Kremer RJ, 1997. Principles in weed management. 2nd ed. Ames, Iowa State University Press.Google Scholar
  2. Baker FWG & Terry PJ, 1991. Tropical grassy weeds. CAB International. Melksham, UK, Redwood Press Limited.Google Scholar
  3. Benson JM, 1982. Weeds in Tropical Crops: Review of Abstracts on Constraints in Production Caused by Weeds in Maize, Rice, Sorghum-Millet, Groundnuts, and Cassava, 1952–1980. Rome, Italy: FAO Plant Protection and Protection Paper no. 32, supp. 1.Google Scholar
  4. Bulcke R, Cools K, Callens D & Eelen H, 1996. Response of selected crops and weeds to soil-applied sulcotrione. Med Fac Landb Toeg Biol Wet Univ Gent 61:1049–1054.Google Scholar
  5. Clements DR, DiTommaso A, Darbyshire SJ, Cavers PB & Sar-tonov AD, 2004. The biology of Canadian weeds. 127. Panicum capillare L. Can J Plant Sci 84, 327–341.CrossRefGoogle Scholar
  6. Freckmann RW & Lelong MG, 2003. Panicum L. In: Barkworth ME, Capels KM, Long S & Piep MB (eds) 2003: Flora of North America North of Mexico. Volume 25. Oxford University Press, New York. 450–488.Google Scholar
  7. Gibbs-Russell GEL, Watson L, Koekemoer M, Smook L, Barker NP, Anderson HM & Dallwitz MJ, 1990. Grasses of Southern Africa: an Identification Manual with Keys, Descriptions, Classification and Automated Identification and Information Retrieval from Computerized Data. Pretoria: Botanical Research Institute, Memoirs of the Botanical Survey of South Africa No. 58.Google Scholar
  8. Gross KL, Maruca D & Pregitzer KS, 1992. Seedling growth and root morphology of plants with different life-histories. New Phytol 120, 535–542.CrossRefGoogle Scholar
  9. Hoste I & Verloove F, 2001. De opgang van C4 grassen (Poaceae, Paniceae) in de snel evoluerende onkruidvegetaties in maïsakkers tussen Brugge en Gent (Vlaanderen, België). Dumortiera 78, 2–11.Google Scholar
  10. Knezevic SZ, Streibig JC & Rits C, 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21, 840–848.CrossRefGoogle Scholar
  11. R Development Core Team, 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL Scholar
  12. Ritz C & Streibig JC, 2005. Bioassay analysis using R. J Stat Softw 12, 1–12.CrossRefGoogle Scholar
  13. Rouchaud O, Neus O, Cools K & Bulcke R, 2000. Dissipation of the triketone mesotrione herbicide in the soil of corn crops grown on different soil types. Toxicol Environ Chem 77, 31–40.CrossRefGoogle Scholar
  14. Santel HJ, 2009. Laudis® OD — a new herbicide for selective post-emergence weed control in corn (Zea mays L.). Bayer CropSci J 62, 95–108.Google Scholar
  15. Schönhammer A, Freitag F & Koch H, 2006. Topramezone — ein neuer Herbizidwirkstoff zur hochselektiven Hirse- und Unkrautbekämpfung in Mais. J Plant Dis Protect, Suppl, 1023–1031.Google Scholar
  16. Schulte W & Köcher H, 2009. Tembotrione and combination partner isoxadifen-ethyl -mode of herbicidal action. Bayer CropSci J 62, 35–52.Google Scholar
  17. Schuster C, 2007. Weed Science Education and Research: The Agronomy Learning Farm and Mesotrione and Sulfonylurea Herbicide Interactions. Ph.D dissertation. Manhattan, Kansas, Kansas State University.Google Scholar
  18. Singh S & Singh M, 2004. Effect of growth stage on trifloxy-sulfuron and glyphosate efficacy in twelve weed species of Citrus groves. Weed Technol 18, 1031–1036.CrossRefGoogle Scholar
  19. Soltani N, Kaastra AC, Swanton CJ & Sikkema PH, 2012. Efficacy of topramezone and mesotrione for the control of annual grasses. Int Res J Agric Sci Soil Sci 2, 46–50.Google Scholar
  20. Streibig JC, Rudemo M & Jensen JE, 1993. Dose-response curves and statistical models. In: Streibig JC & Kudsk P (eds) 1993: Herbicide Bioassays. CRC Press, Boca Raton. 29–55.Google Scholar
  21. Vanderhoeven S, Pieret N, Tiebre MS, Dassonville N, P, Rossi E, Nijs I, Pairon M, Jacquemart AL, Vanhecke L, Hoste I, Verloove F & Mahy G, 2006. Invasive Plants in Belgium: Patterns, Processes and Monitoring (Inplanbel). Brussels, Belgium: Belgian Science Policy, Final report.Google Scholar
  22. Van Der Meijden R, 2005. Heukels’ Flora of the Netherlands. Groningen, the Netherlands: Wolters-Noordhoff.Google Scholar
  23. Van der Vaart AW, 1998. Asymptotic Statistics. Cambridge, UK, Cambridge University Press.CrossRefGoogle Scholar
  24. Van Landuyt W, Hoste I, Vanhecke L, Van Den Brempt P, Vercruysse W & De Beer D, 2006. Atlas van de Flora van Vlaanderen en het Brussels Gewest. Instituut voor Natuuren Bosonderzoek, Nationale Plantentuin van België & Flo. Wer., Belgium.Google Scholar
  25. Vengris J & Damon RA, 1976. Field growth of fall panicum and witchgrass. Weed Sci 24, 205–208.Google Scholar
  26. Verloove F, 2001. A revision of the genus Panicum (Poaceae, Paniceae) in Belgium. Syst Geogr Pl 71, 53–72.CrossRefGoogle Scholar
  27. Wax LM, Fawcett RS & Isely D, 1981. Weeds of the North Central States. Urbana-Champaign: University of Illinois, Agric. Exp. Stn, Bull. 772.Google Scholar
  28. Wicks GA, Mahnken GW & Hanson GE, 1995. Influence of small grain crops on weeds and ecofallow corn (Zea mays). Weed Sci 43, 128–133.Google Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2014

Authors and Affiliations

  • Benny De Cauwer
    • 1
  • Tim Geeroms
    • 1
  • Sofie Claerhout
    • 1
  • Robert Bulcke
    • 1
  • Dirk Reheul
    • 1
  1. 1.Weed Science Unit, Department of Plant Production, Faculty of Bioscience EngineeringGhent UniversityGentBelgium

Personalised recommendations