Journal of Plant Diseases and Protection

, Volume 120, Issue 1, pp 26–33 | Cite as

Effect of Primula root and other plant extracts on infection structure formation of Phyllosticta ampelicida (asexual stage of Guignardia bidwellii) and on black rot disease of grapevine in the greenhouse

  • Eckhard Koch
  • Melanie Enders
  • Cornelia Ullrich
  • Daniel Molitor
  • Beate Berkelmann-Löhnertz


The paper describes in vitro and in vivo experiments with extracts from Primula root and Hedera helix aimed at characterizing their effect on Phyllosticta ampelicida (teleomorph: Guignardia bidwellii), the causal agent of black rot disease of grapevine. In pre-tests, collodion membranes placed over water agar were determined to be better suited for spore germination and appressoria formation than cellophane sheets. On collodion membranes placed over water agar amended with different agents, the fungicide Polyram® WG (metiram) inhibited germination of the conidia of P. a m -pelicida completely. Inhibition by the extract from Primula root was similarly high and stronger than by the extract from H. helix. Primula root extract also inhibited conidial germination on grape leaves. In greenhouse tests, protective application of the extracts of H. helix and Primula root at concentrations of 1.0 and 0.5% reliably provided control of black rot with efficacy > 90%, which was in the same range as protection provided by the saponin-containing reference extracts from Sapindus mukorossi, Chenopodium quinoa and Quillaja spec.. In further tests, protective and curative activity (i.e. application of treatments 24 h before or 24 h after pathogen inoculation) was compared. The agents tested were extracts from Primula root and H. helix, Polyram® WG, the resistance inducer BION® 50 WG (acibenzolar-S-methyl) and Frutogard®, a product containing an extract from brown algae and phosphonate. When applied protectively, all treatments reduced the disease severity. The efficacy of primula root extract was similar to that of Polyram® WG, which provided complete control. Curative application caused a much lower reduction in disease, which was most pronounced for the Frutogard® treatment.

Key words

Vitis vinifera organic farming copper replacement acibenzolar-S-methyl Hedera helix Frutogard 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous, 2004. Guidelines for the efficacy evaluation of fungicides. Plasmopara viticola. EPPO, PP 1/31(3).Google Scholar
  2. Bedir E, Kirmizipekmez H, Sticher O & Calis I, 2000. Triterpene saponins from the fruits of Hedera helix. Phyto-chemistry 53, 905–909.Google Scholar
  3. Bengtsson M, Wulff E, Lyngs Jørgensen HJ, Pham A, Lübeck M & Hockenhull J, 2009. Comparative studies on the effects of a yucca extract and acibenzolar-S-methyl (ASM) on inhibition of Venturia inaequalis in apple leaves. Eur J Plant Pathol 124, 187–19.CrossRefGoogle Scholar
  4. Borris RP, 1996. Natural products research: perspectives from a major pharmaceutical company. J Ethnopharmacol 51, 29–38.CrossRefPubMedGoogle Scholar
  5. Bosshard E, 1992. Effect of ivy (Hedera helix) leaf extract against apple scap and mildew. Acta Phytopathol Hun 27, 135–140.Google Scholar
  6. Caltrider PG, 1961. Growth and sporulation of Guignardia bidwellii. Phytopathology 51, 860–863.Google Scholar
  7. Chapagain BP, Wiesman Z & Tsror L, 2007. In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Ind Crop Prod 26, 109–115.CrossRefGoogle Scholar
  8. Daayf F, Schmitt A & Belanger RR, 1995. The effects of plant extracts of Reynoutria sachalinensis on powdery mildew development and leaf physiology of long English cucumber. Plant Dis 79, 577–580.CrossRefGoogle Scholar
  9. De Lucca AJ, Klich M, Boue S, Cleveland TE, Sien T & Walsh TJ, 2008. Fungicidal activity of plant saponin CAY-1 for fungi isolated from diseased Vitis fruit and stems. Am J Enol Viticult 59, 67–72.Google Scholar
  10. Elias R, Diaz Lanza AM, Vidal-Olivier E, Balansard G, Faure R & Babadjamian A, 1991. Triterpenoid saponins from the leaves of Hedera helix. J Nat Prod 54, 98–103.CrossRefGoogle Scholar
  11. Grosman J, 2005. Bilan phytosanitaire: de la vigne en 2005. Phytoma 587, 18–23.Google Scholar
  12. Güçlü-Üstündağ Ö & Mazza G, 2007. Saponins: properties, applications and processing. Crit Rev Food Sci 47, 231–258.CrossRefGoogle Scholar
  13. Ishii H, Tomita Y, Horio T, Narusaka Y, Nakazawa Y, Nishimura K & Iwamoto S, 1999. Induced resistance of acibenzolar-S-methyl (CGA 245704) to cucumber and Japanese pear diseases. Eur J Plant Pathol 105, 77–85.CrossRefGoogle Scholar
  14. Köhl JJ, Molhoek WWML, Groenenboom-de Haas BBH & Goossen-van de Geijn HHM, 2009. Selection and orchard testing of antagonists suppressing conidial production by the apple scab pathogen Venturia inaequalis. Eur J Plant Pathol 123, 401–414.CrossRefGoogle Scholar
  15. Kofoet A & Fischer K, 2007. Evaluation of plant resistance improvers to control Peronospora destructor, P. parasitica, Bremia lactucae and Pseudoperonospora cubensis. J Plant Dis Protect 114, 54–61.CrossRefGoogle Scholar
  16. Kuo KC & Hoch HC, 1995. Visualization of the extracellular matrix surrounding pycnidiospores, germlings, and appres-soria of Phyllosticta ampelicida. Mycologia 87, 759–771.CrossRefGoogle Scholar
  17. Kuo KC & Hoch HC, 1996a. Germination of Phyllosticta ampelicida pycnidiospores: prerequisite of adhesion to the substratum and the relationship of substratum wettability. Fungal Genet Biol 20, 18–29.CrossRefPubMedGoogle Scholar
  18. Kuo KC & Hoch HC, 1996b. The parasitic relationship between Phyllosticta ampelicida and Vitis vinifera. Myco-logia 88, 626–634.CrossRefGoogle Scholar
  19. MacHardy WE, 1996. Apple Scab. Biology, Epidemiology and Management. APS Press, St. Paul, MN. 545 pp.Google Scholar
  20. Loskill B, Molitor D, Koch E, Harms M, Berkelmann-Löhnertz B, Hoffmann C, Kortekamp A, Porten M, Louis F & Maixner M, 2009. Abschlussbericht: Strategien zur Regulation der Schwarzfäule (Guignardia bidwellii) im ökologischen Wein-bau (Management of black rot (Guignardia bidwellii) in organic viticulture).
  21. Molitor D, 2009. Biologie und Bekämpfung der Schwarzfäule (Guignardia bidwellii) an Weinreben. Dissertation, Geisen-heimer Berichte Bd. 65. Gesellschaft zur Förderung der Forschungsanstalt Geisenheim, Geisenheim.Google Scholar
  22. Molitor D & Berkelmann-Löhnertz B, 2011. Simulating the susceptibility of clusters to grape black rot infections depending on their phenological development. Crop Prot 30, 1649–1654.CrossRefGoogle Scholar
  23. Molitor D, Baus O & Berkelmann-Löhnertz B, 2011. Protective and curative grape black rot control potential of pyraclos-trobin and myclobutanil. J Plant Dis Protect 118, 61–187.Google Scholar
  24. Molitor D, Heibertshausen D, Baus O, Loskill B, Maixner M & Berkelmann-Löhnertz B, 2010. Einsatz eines Sapindus mukorossi-Extraktes zur Regulierung von pilzlichen Patho-genen an Weinreben–eine Alternative für den ökolo-gischen Rebschutz? J Kulturpflanzen 62, 444–450.Google Scholar
  25. Müller A, Ganzera M & Stuppner H, 2006. Analysis of phenolic glycosides and saponins in Primula elatior and Primula veris (primula root) by liquid chromatography, evaporative light scattering detection and mass spectrometry. J Chromatogr A 112, 218–223.CrossRefGoogle Scholar
  26. Pfeiffer B, Alt S, Hein B, Schulz C & Kollar A, 2002. Investigations on alternative substances for control of apple scab — results from conidia germination tests and experiments with plant extracts. 11th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing. Proceedings of the Conference, Weinsberg, Germany, 3–5 February 2004.Google Scholar
  27. Prats E, Rubiales D & Jorrín J, 2002. Acibenzolar-S-methyl-induced resistance to sunflower rust (Puccinia helianthi) is associated with an enhancement of coumarins on foliar surface. Physiol Mol Plant Pathol 60, 155–162.CrossRefGoogle Scholar
  28. Pretorius JC, Zietsman PC & Eksteen D, 2002. Fungitoxic properties of selected South African plant species against plant pathogens of economic importance in agriculture. Ann Appl Biol 141, 117–124.CrossRefGoogle Scholar
  29. Ramsdell DC & Milholland RD, 1988. Black Rot. Pages 15–17 in: RC Pearson and AC Goheen (eds.). Compendium of Grape Diseases. American Phytopathological Society, St. Paul, Minnesota.Google Scholar
  30. Ruess W, Mueller K, Knauf-Beiter G, Kunz W & Staub T, 1996. Plant activtor CGA245704: an innovative approach for disease control in cereals and tobacco. Proc Brighton Crop Protection Conf, Vol. 2: 53–60.Google Scholar
  31. Schönbeck F & Schlösser E, 1976. Preformed substances as potential protectants. In: Heitefuss R & Williams PH (eds.): Physiological Plant Pathology. Encyclopedia of Plant Pathoplogy, New Series, Vol. 4. Springer, Berlin, Heidelberg. 653–678.CrossRefGoogle Scholar
  32. Shaw BD, Kuo KC & Hoch HC, 1998. Germination and ap-pressorium development of Phyllosticta ampelicida pycn-idiospores. Mycologia 90, 258–260.CrossRefGoogle Scholar
  33. Solntsev MK, Karavaev VA, Yurina EV, Kuznetsov AM, Polyakova IB & Frantsev VV, 2002. Stimulant effect of plant activator ASM on photosynthesis and its inhibitory effect on pathogenic fungi. In: Taborsky V, Polak J, Lebeda A & Kudela V (eds.): Plant Protection Science Volume 38, Special Issue 2, 497–501.Google Scholar
  34. Tegegne G, Pretorius JC & Swart WJ, 2008. Antifungal properties of Agapanthus africanus L. extracts against plant pathogens. Crop Prot 27, 1052–1060.CrossRefGoogle Scholar
  35. Tomoioaga L & Comsa M, 2010. The strategy of optimization for combat the black rot of vine (Guignardia bidwellii), in the ecoclimatic conditions from vineyard Târnave. Bull Univ of Agric Sci Hort 67, 500.Google Scholar
  36. Travis J, Hed B & Muza A, 2005. Control of black rot in organic grape production systems. Research Report to the New York Wine/Grape Foundation, The Grape Production Research Fund and The Viticulture Consortium-East.Google Scholar
  37. Ullrich CI, Kleespies RG, Enders M & Koch E, 2009. Biology of the black rot pathogen, Guignardia bidwellii, its development in susceptible leaves of grapevine Vitis vinifera. J Kulturpflanzen 61, 82–90.Google Scholar
  38. Wulff EG, Zida E, Torp J & Lund OS, 2012. Yucca schidigera extract: a potential biofungicide against seedborne pathogens of sorghum. Plant Pathology 61, 331–338.CrossRefGoogle Scholar
  39. Xu X, Robinson J, Jeger M & Jeffries P, 2010. Using combinations of biocontrol agents to control Botrytis cinerea on strawberry leaves under fluctuating temperatures. Biocontrol Sci Techn 20, 359–373.CrossRefGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2013

Authors and Affiliations

  • Eckhard Koch
    • 1
  • Melanie Enders
    • 1
  • Cornelia Ullrich
    • 1
  • Daniel Molitor
    • 2
  • Beate Berkelmann-Löhnertz
    • 3
  1. 1.Institute for Biological ControlJKIDarmstadtGermany
  2. 2.Department Environment and Agro-BiotechnologiesCentre de Recherche Public — Gabriel LippmannBelvauxLuxembourg
  3. 3.Section of PhytomedicineGeisenheim Research CenterGeisenheimGermany

Personalised recommendations