Skip to main content
Log in

Plant pest and disease diagnosis using electronic nose and support vector machine approach

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

In this paper, we evaluate the use of an electronic nose (EN) containing 13 conducting polymer gas sensors to discriminate between patterns of volatile organic compounds (VOCs) emitted by plants. The VOC patterns examined were produced by tomato, cucumber and pepper plants under both healthy and infected or infested conditions. Leaves from the plants were subjected to mechanical damage or pest and disease attacks (i.e. spider mites infested or mildew infected) and others were judged against undamaged healthy leaves. Support vector machines (SVMs) with linear, polynomial and Gaussian radial basis function (RBF) kernels were used to process and classify the raw data collected. The SVM illustrated an ability to discriminate between different VOC patterns and hence was able to classify correctly the infected leaves using the EN data. The results indicate that the array of 13 EN gas sensors can discriminate among VOC patterns from undamaged and artificially damaged leaves of the three plant species. This study demonstrates the potential application of such an EN technology coupled with suitable pattern recognition and signal processing methods to be used as a real time pest and disease detection system in the greenhouse environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ampuero S & Bosset JO, 2003. The electronic nose applied to dairy products: a review. Sensor Actuat B-Chem 94, 1–12.

    Article  CAS  Google Scholar 

  • Arimura G, Kost C & Boland W, 2005. Herbivore-induced, indirect plant defense. Biochim Biophys Acta 1734, 91–111.

    Article  CAS  PubMed  Google Scholar 

  • Baratto C, Faglia G, Pardo M, Vezzoli M, Boarino L, Maffei M, Bossi S & Sberveglieri G, 2005. Monitoring plants health in greenhouse for space missions. Sensor Actuat B-Chem 108, 278–284.

    Article  CAS  Google Scholar 

  • Borah S, Hines EL, Leeson MS, Iliescu DD, Bhuyan M & Gardner JW, 2008. Neural network based electronic nose for classification of tea aroma. Sens Instrum Food Qual Saf 2, 7–14.

    Article  Google Scholar 

  • Brudzewski K, Osowski S, Markiewicz T & Ulaczyk J, 2006. Classification of gasoline with supplement of bio-products by means of an electronic nose and SVM neural network. Sensor Actuat B-Chem 113, 135–141.

    Article  CAS  Google Scholar 

  • Capelli L, Sironi S, Céntola P, Del Rosso R & Il Grande M, 2008. Electronic noses for the continuous monitoring of odours from a wastewater treatment plant at specific receptors: Focus on training methods. Sensor Actuat B-Chem 131, 53–62.

    Article  CAS  Google Scholar 

  • Chen Q, Zhao J, Chen Z, Lin H & Zhao D, 2011. Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools. Sensor Actuat B-Chem 159, 294–300.

    Article  CAS  Google Scholar 

  • Çomak E & Arslan A, 2008. A new training method for support vector machines: Clustering k-NN support vector machines. Expert Syst Appl 35, 564–568.

    Article  Google Scholar 

  • Distante C, Ancon N & Siciliano P, 2003. Support vector machines for olfactory signals recognition. Sensor Actuat B-Chem 88, 30–39.

    Article  CAS  Google Scholar 

  • Du CJ & Sun DW, 2005. Pizza sauce spread classification using colour vision and support vector machines. J Food Eng 66, 137–145.

    Article  Google Scholar 

  • Dutta R, Morgan D, Baker N, Gardner JW & Hines EL, 2005. Identification of Staphylococcus aureus infections in hospital environment: electronic nose based approach. Sensor Actuat B-Chem 109, 355–362.

    Article  CAS  Google Scholar 

  • Farag MA, Ryu C, Sumner LW & Paré PW, 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67, 2262–2268.

    Article  CAS  PubMed  Google Scholar 

  • Gardner JW, Hines EL & Tang HC, 1992. Detection of vapours and odours from a multisensor array using pattern-recognition techniques. Part 2. Artificial neural networks. Sensor Actuat B-Chem 9, 9–15.

    Article  CAS  Google Scholar 

  • Heijden van der F, Duin R & Ridder D, 2004. Classification, Parameter Estimation, and State Estimation Engineering Approach Using MATLAB. Sussex: John Wiley & Sons Ltd.

    Book  Google Scholar 

  • Hewitt CN, MacKenzie A, Di Carlo P, Di Marco C, Dorsey J, Evans M, Fowler, D, Gallagher M, Hopkins J, Jones C, Langford B, Lee J, Lewis AC, Lim S, McQuaid J, Misztal P, Moller S, Monks PS, Nemitz E, Oram D, Owen S, Phillips G, Pugh T, Pyle JA, Reeves C, Ryder J, Siong J, Skiba U & Stewart D, 2009. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground level ozone pollution. Proc Natl Acad Sci 106, 18447–18451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hines EL, Gardner JW & Potter C, 1997. Olfactory feature maps from an electronic nose. Meas Control 30, 262–268.

    Article  Google Scholar 

  • Jansen RMC, Hofstee JW, Wildt J, Verstappen FWA, Bouwmeester HJ & Henten EJV, 2009. Induced plant volatiles allow sensitive monitoring of plant health status in greenhouses. Plant Signal Behav 4, 824–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalman E, Löfvendahl A, Winquista F & Lundström I, 2000. Classification of complex gas mixtures from automotive leather using an electronic nose. Anal Chim Acta 403, 31–38.

    Article  CAS  Google Scholar 

  • Li H, Liang Y & Xu Q, 2009. Support vector machines and its applications in chemistry. Chemometr Intell Lab 95, 188–198.

    Article  CAS  Google Scholar 

  • Laothawornkitkul J, Taylor JE, Paul ND & Hewitt CN, 2009. Biogenic volatile organic compounds in the Earth system: a Tansley Review. New Phytol 183, 27–51.

    Article  CAS  PubMed  Google Scholar 

  • Laothawornkitkul J, Moore JP, Taylor JE, Possell M, Gibson TD, Hewitt CN & Paul ND, 2008. Monitoring, discrimination of plant volatile signatures by an electronic nose: A potential technology for plant pest and disease. Environ Sci Technol 42, 8433–8439.

    Article  CAS  PubMed  Google Scholar 

  • Luan F, Liu HT, Ma WP & Fan BT, 2008. Classification of estrogen receptor-β ligands on the basis of their binding affinities using support vector machine and linear discriminant analysis. Eur J Med Chem 43, 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Owen SM, Harley P, Guenther A & Hewitt CN, 2002. Light dependency of VOC emissions from selected Mediterranean plant species. Atmos Environ 36, 3147–3159.

    Article  CAS  Google Scholar 

  • Peris M & Escuder-Gilabert L, 2009. A 21st century technique for food control: electronic noses. Anal Chim Acta 638, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Persaud K & Dodd G, 1982. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299, 352–355.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez VD, 2003. Advanced support vector machines and kernel methods. Neurocomputing 55, 5–20.

    Article  Google Scholar 

  • Sankaran S, Mishra A, Ehsani R & Davis C, 2010. A review of advanced techniques for detecting plant diseases. Comput Electron Agr 72, 1–13.

    Article  Google Scholar 

  • Sobanski T, Szczurek A, Nitsch K, Licznerski BW & Radwan W, 2006. Electronic nose applied to automotive fuel qualification. Sensor Actuat B-Chem 116, 207–212.

    Article  CAS  Google Scholar 

  • Sohn J, Hudson N, Gallagher E, Dunlop M, Zeller L & Atzeni M, 2008. Implementation of an electronic nose for continuous odour monitoring in a poultry shed. Sensor Actuat B-Chem 133, 60–69.

    Article  CAS  Google Scholar 

  • Tran Q, Li X & Duan H, 2005. Efficient performance estimate for one-class support vector machine. Pattern Recogn Lett 26, 1174–1182.

    Article  Google Scholar 

  • Vapnik VN, 1995. An overview of statistical learning theory. IEEE T Neural Networ 10, 988–999.

    Article  Google Scholar 

  • Vickers C, Possell M, Cojocariu C, Velikova VB, Laothawornkitkul J, Ryan A, Mullineaux P & Hewitt CN, 2009. Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32, 520–531.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z & Li G, 2007. A preliminary study of plant aroma profile characteristics by a combination sampling method coupled with GC-MS. Microchem J 86, 29–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghaffari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffari, R., Laothawornkitkul, J., Iliescu, D. et al. Plant pest and disease diagnosis using electronic nose and support vector machine approach. J Plant Dis Prot 119, 200–207 (2012). https://doi.org/10.1007/BF03356442

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356442

Key words

Navigation