Journal of Plant Diseases and Protection

, Volume 118, Issue 6, pp 222–224 | Cite as

Control of Phacidiopycnis washingtonensis storage rot of apples by hot-water treatments without the ethylene inhibitor 1-MCP

  • Peter Maxin
  • Roland W. S. WeberEmail author
Short Communication


Phacidiopycnis washingtonensis, cause of rubbery rot of apples during long-term storage, was first observed in Denmark in April 2010 on fruits of the 2009 harvest. Hot-water treatments were examined as a possible way to control P. washingtonensis. The effective temperature causing a 50% mortality of infectious spores (conidia) after a 3-min submersion in water was 40.2°C. A significant reduction of rubbery rot was achieved by dipping artificially infected fruit in a water bath at 47–52°C for 3 min. Using naturally infected apples, P. washingtonensis as well as the widespread storage-rot pathogen Neofabraea perennans were effectively controlled by a post-harvest dip at 50°C for 3 min or by a rinse at 55°C for 20 s, followed by cold storage in controlled-atmosphere conditions. In contrast, a treatment of freshly harvested fruits with 1-methylcyclopropene (1-MCP) instead of hot water failed to control P. w a s h i n g t o -nensis.

Key words

Controlled-atmosphere storage Malus domestica 1-methylcyclopropene Neofabraea perennans post-harvest disease rubbery rot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burchill RT, 1964. Hot water as a possible post-harvest control of Gloeosporium rots of stored apples. Plant Pathol 13, 106–107.CrossRefGoogle Scholar
  2. Fallik E, Grinberg S, Gambourg, M, Klein JD & Lurie S, 1995. Prestorage heat treatment reduces pathogenicity of Penicillium expansum in apple fruit. Plant Pathol 45, 92–97.CrossRefGoogle Scholar
  3. Hennecke C, Köpcke D & Dierend W, 2008. Dynamische Absenkung des Sauerstoffgehaltes bei der Lagerung von Äpfeln. Erw-Obstb 50, 19–29.CrossRefGoogle Scholar
  4. Kim YK & Xiao CL, 2006. A postharvest fruit rot in apple caused by Phacidiopycnis washingtonensis. Plant Dis 90, 1376–1381.CrossRefGoogle Scholar
  5. Lafer G, 2009. Dynamische CA-Lagerung: erste Praxiserfahrungen mit Bio-Topaz in der Steiermark. Besseres Obst 54, 12/2009, 18–23.Google Scholar
  6. Palm G & Kruse P, 2005. Maßnahmen zur Verminderung der Verluste durch Fruchtfäulnis beim Apfel. Mitt d OVR d Alten Landes 60, 46–52.Google Scholar
  7. Rizzoli W & Acler A, 2009. Versuche zur Bekämpfung der Gloeosporium Fruchtfäule bei Pinova. Obstb Weinb 46, 267–271.Google Scholar
  8. Trierweiler B, Schirmer H & Tauscher B, 2003. Hot water treatment to control Gloeosporium disease during long-term storage. J Appl Bot 77, 156–159.Google Scholar
  9. Veltman RH, Verschoor JA & Ruijsch van Dugteren JH, 2003. Dynamic control system (DCS) for apples (Malus domestica Borkh. cv ‘Elstar’): optimal quality through storage based on product response. Postharvest Biol Technol 27, 79–86.CrossRefGoogle Scholar
  10. Verkley GJM, 1999. A monograph of the genus Pezicula and its anamorphs. Stud Mycol 44, 1–180.Google Scholar
  11. Weber RWS, 2009. Resistenz des Bitterfäule-Erregers Neo-fabraea perennans gegen Thiophanate-methyl: Konidien-keimung vs. Hyphenwachstum. Erw-Obstb 51, 145–149.CrossRefGoogle Scholar
  12. Weber RWS, 2011. Phacidiopycnis washingtonensis, cause of a new storage rot of apples in Northern Europe. J Phyto-pathol 159, 682–686.Google Scholar
  13. Xiao CL, Rogers JD, Kim YK & Liu Q, 2005. Phacidiopycnis washingtonensis — a new species associated with pome fruits from Washington State. Mycologia 97, 464–473.CrossRefPubMedGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2011

Authors and Affiliations

  1. 1.Department of Food ScienceAarhus UniversityAarslevDenmark
  2. 2.Esteburg Fruit Research and Advisory CentreJorkGermany

Personalised recommendations