Advertisement

Journal of Plant Diseases and Protection

, Volume 118, Issue 3–4, pp 127–133 | Cite as

Synergistic damage by interactions between Ditylenchus dipsaci and Rhizoctonia solani (AG 2–2IIIB) on sugar beet

  • Christian HillnhütterEmail author
  • Andreas Albersmeier
  • Carlos A. Berdugo
  • Richard A. Sikora
Article

Abstract

The aim of this study was to investigate interactions between Ditylenchus dipsaci and Rhizoctonia solani. Both pathogens are known to cause problems in the primary sugar beet production areas in Germany. Furthermore, the organisms’ ecological niches in the soil and on the beet overlap. Hence, it is probable that these parasites interact and have a deleterious synergistic impact on sugar beet production. The stem and bulb nematode, D. dipsaci, is a migratory endoparasite that penetrates the sugar beet seedling during the spring when temperatures are low. The main symptoms include distorted, bloated petioles and leaves. The fungus causing Rhizoctonia crown and root rot, R. solani, enters the plant at the beet-leaf transition zone. Synergistic damage was obtained when both organisms occurred on the same plant. Hyperspectral leaf reflectance data was used to calculate a vegetation index, the Normalised Difference Vegetation Index (NDVI), which could successfully be used to discriminate between growth reduction caused by R. solani and by dual inoculation (disease complex). High correlations were observed between ratings of disease symptoms and the vegetation index over a time series of seven weeks.

Keywords

disease complex hyperspectral reflectance interrelationship NDVI Rhizoctonia crown and root rot Stem and bulb nematode synergism vegetation index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott WS, 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18, 265–267.CrossRefGoogle Scholar
  2. Albersmeier A, 2009. Wechselbeziehungen zwischen dem Rübenkopfälchen (Ditylenchus dipsaci) und der späten Rübenfäule (Rhizoctonia solani) an Zuckerrüben. Diploma Thesis, University of Bonn, Germany.Google Scholar
  3. Back MA, Haydock PPJ & Jenkinson P, 2002. Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathol 51, 683–697.CrossRefGoogle Scholar
  4. Baker KF, 1970. Types of Rhizoctonia diseases and their occurrence. In: JR Parmeter (ed.): Rhizoctonia solani: Biology and pathology, pp. 125–148. University of California Press, Los Angeles, USA.Google Scholar
  5. Bergeson BB, 1972. Concepts of nematode-fungus associations in plant disease complexes: A review. Exp Parasitol 32, 301–314.CrossRefPubMedGoogle Scholar
  6. Buhre C, Kluth C, Bürcky K, Märländer B & Varrelmann M, 2009. Integrated control of root and crown rot in sugar beet: Combined effects of cultivar, crop rotation, and soil tillage. Plant Dis 93, 155–161.CrossRefGoogle Scholar
  7. Duncan LW & Moens M, 2006. Migratory Endoparasitic Nematodes. In: RN Perry & M Moens (eds.): Plant Nematology, pp.123–152. CAB International, Wallingford, UK.CrossRefGoogle Scholar
  8. Dunning RA, 1957. Stem eelworm invasion of seedling sugar beet and development of crown canker. Nematologica 2, 362–368.Google Scholar
  9. Evans K & Haydock PPJ, 1993. Interactions of nematodes with root-rot fungi. In: MW Khan (ed.): Nematode Interactions, pp. 104–133. Chapman & Hall, London, UK.CrossRefGoogle Scholar
  10. Griffin GD, 1992. Stem Nematode-Fusarium wilt complex in alfalfa as related to irrigation management at harvest time. J Nematol 24, 315–320.PubMedPubMedCentralGoogle Scholar
  11. Hawn EJ, 1963. Transmission of bacterial wilt of alfalfa by Ditylenchus dipsaci (Kühn). Nematologica 9, 65–68.CrossRefGoogle Scholar
  12. Heath WL, Haydock PPJ, Wilcox A & Evans K, 2000. The potential use of spectral reflectance from the potato crop for remote sensing of infection by potato cyst nematodes. Asp Appl Biol 60, 185–188.Google Scholar
  13. Herr LJ, 1996. Sugar beet diseases incited by Rhizoctonia species. In: B Sneh, S Jabaji-Hare, S Neate & G Dijst (eds.): Rhizoctonia species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control, pp. 341–349. Kluwer Academic, Dordrecht, Netherlands.CrossRefGoogle Scholar
  14. Hillnhütter C & Mahlein AK, 2008. Early detection and localization of sugar beet diseases: new approaches. Ges Pflanzen 60, 143–149.CrossRefGoogle Scholar
  15. Hillnhütter C, Schweizer A, Kühnhold V & Sikora RA, 2010. Remote sensing for the detection of soil-borne plant parasitic nematodes and fungal pathogens. In: E-C Oerke, R Gerhards, G Menz & RA Sikora (eds.): Precision crop protection — the challenge and use of heterogeneity, pp. 151–165. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
  16. Hillnhütter C, Mahlein AK, Sikora RA & Oerke E-C, 2011a. Use of imaging spectroscopy to discriminate symptoms caused by Heterodera schachtii and Rhizoctonia solani on sugar beet. Precis Agric DOI: 10.1007/s11119-011-9237-2.Google Scholar
  17. Hillnhütter C, Sikora RA & Oerke E-C, 2011b. Influence of different levels of resistance or tolerance in sugar beet cultivars on complex interactions between Heterodera schachtii and Rhizoctonia solani. Nematology 13, 319–332.CrossRefGoogle Scholar
  18. Hillnhütter C, Mahlein AK, Sikora RA & Oerke E-C, 2011c. Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crop Res 122, 70–77.CrossRefGoogle Scholar
  19. Hooper DJ, Hallmann J & Subbotin S, 2005. Methods for extraction, processing and detection of plant and soil nematodes. In: M Luc, RA Sikora & J Bridge (eds.): Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, pp 53–86. CAB International Publishing Wallingford, UK.CrossRefGoogle Scholar
  20. Inagaki H & Powell NT, 1969. Influence of the root-lesion nematode on black shank symptom development in fluecured tobacco. Phytopathol 59, 1350–1355.Google Scholar
  21. Khan MW, 1993. Nematode Interactions, first edition. Chapman & Hall, London, UK.CrossRefGoogle Scholar
  22. Knuth P, 2007. Ist der Befallsverlauf von Ditylenchus dipsaci in Zuckerrübe durch die Sortenwahl beeinflussbar? Nachrichtenbl Deut Pflanzenschutzd 59, 190–191.Google Scholar
  23. Koch J, 2007. Einfluss von Zuckerrübensorten und -linien auf die Reproduktion und Schadwirkung von Ditylenchus dipsaci unter Gewächshausbedingungen. Diploma Thesis University of Bonn, Germany, 95 p.Google Scholar
  24. Kühnhold V, Kiewnick S & Sikora RA, 2006. Development of an in vivo bioassay to identify sugar beet resistance to the stem nematode Ditylenchus dipsaci. Nematology 8, 641–645.CrossRefGoogle Scholar
  25. Leach LD & Garber RH, 1970. Control of Rhizoctonia. In: JR Parmeter (ed.): Rhizoctonia solani: Biology and Pathology, pp. 189–198. University of California, Los Angeles, USA.Google Scholar
  26. Metcalfe G, 1940. Bacterium rhaponticum (Millard) Dowson, a cause of crown-rot disease of rhubarb. Ann Appl Biol 27, 502–508.CrossRefGoogle Scholar
  27. Moens M & Perry RN, 2009. Migratory plant endoparasitic nematodes: A group rich in contrasts and divergence. Ann Rev Phytopathol 47, 313–332.CrossRefGoogle Scholar
  28. Niere B & Schlang J, 2006. Charakterisierung von Populationen des Erregers der Rübenkopffäule Ditylenchus dipsaci. Mitt Biol Bundesanst Land Forstwirtschaft 400, 220.Google Scholar
  29. Ogoshi A, 1996. Introduction — the genus Rhizoctonia. In: B Sneh, S Jabaji-Hare, S Neate, & G Dijst (eds.): Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control, pp. 1–11. Kluwer Academic, Dordrecht, Netherlands.CrossRefGoogle Scholar
  30. Oostenbrink M, 1960. Estimating nematode populations by some selected methods. In: JN Sasser & WR Jenkins (eds.): Nematology, pp. 85–102. University of North Carolina, Chapel Hill, USA.Google Scholar
  31. Pitcher RS, 1978. Interactions of nematodes with other pathogens. In: JF Southey (ed.): Plant nematology, pp. 63–77. Her Majesty’s Stationery Office, Ministry of Agriculture, Fisheries and Food, London, UK.Google Scholar
  32. Polychronopoulos AG, 1970. Effect of Heterodera schachtii, alone, or in combination with Rhizoctonia solani, on sugar beet seedlings. Ann Inst Phytopathol Ben 9, 118–133.Google Scholar
  33. Powell NT, 1971. Interactions between nematodes and fungi in disease complexes. Ann Rev Phytopathol 9, 253–274.CrossRefGoogle Scholar
  34. Richards BL, 1921. A dry rot cancer of sugar beets. J Agric Res 22, 47–67.Google Scholar
  35. Rouse JW, Haas RH, Schell JA & Deering DW, 1974. Monitoring vegetation systems in the Great Plains with ERTS. Proceedings Third Earth Resources Technology Satellite-1 Symposium, pp. 3010–3017, Greenbelt, USA.Google Scholar
  36. Schlang J, 2002. Versuche zur Bekämpfung des Rübenkopfälchens Ditylenchus dipsaci an Zuckerrüben. Mitt Biol Bundesanst Land Forstwirtschaft 390, 175–176.Google Scholar
  37. Seinhorst JW, 1957. Some Aspects of the biology and ecology of stem eelworms. Nematologica 2, 355–361.Google Scholar
  38. Shurtleff MC & Averre CW, 1997. Glossary of plant-pathological terms, p. 323. APS, St. Paul, USA.Google Scholar
  39. Sikora RA & Carter WW, 1987. Nematode interactions with fungal and bacterial plant pathogens — fact or fantasy. In: JA Veech & DW Dickson (eds.): Vistas on Nematology, pp. 307–312. Society of Nematologists, Hyattsville, USA.Google Scholar
  40. Subbotin SA, Madani M, Krall E, Sturhan D & Moens M, 2005. Molecular diagnostics, taxonomy, and phylogeny of the stem nematode Ditylenchus dipsaci species complex based on the sequences of the internal transcribed spacer-rDNA. Phytopathol 95, 1308–1315.CrossRefGoogle Scholar
  41. Vrain TC, 1987. Effect of Ditylenchus dipsaci and Pratylenchus penetrans on Verticilium wilt of alfalfa. J Nematol 19, 379–383.PubMedPubMedCentralGoogle Scholar
  42. West JS, Bravo C, Oberti R, Lemaire D, Moshou D & McCartney HA, 2003. The potential of optical canopy measurement for targeted control of field crop diseases. Annu Rev Phytopathol 41, 593–614.CrossRefPubMedGoogle Scholar
  43. Zens I, Steiner U & Dehne H-W, 2002. Auftreten, Charakterisierung und Kontrolle des Erregers der Rübenfäule, Rhizoctonia solani, in Nordrhein-Westfalen. Landwirtschaftliche Fakultät der Universität Bonn, Schriftenreihe des Lehr- und Forschungsschwerpunktes USL 91, 99 p.Google Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2011

Authors and Affiliations

  • Christian Hillnhütter
    • 1
    Email author
  • Andreas Albersmeier
    • 1
  • Carlos A. Berdugo
    • 1
  • Richard A. Sikora
    • 1
  1. 1.Institute of Crop Science and Resource Conservation (INRES) — Department PhytomedicineRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations