Advertisement

Journal of Plant Diseases and Protection

, Volume 118, Issue 3–4, pp 109–118 | Cite as

Impact of arbuscular mycorrhiza on the St. John’s wort (Hypericum perforatum) wilt disease induced by Colletotrichum cf. gloeosporioides

  • Jana Richter
  • Helmut Baltruschat
  • Kathrin Kabrodt
  • Ingo Schellenberg
Article

Abstract

The importance of herbal plants is evident in the prevalent use as flavoring ingredients in food. However, meeting the growing demand for organic grown spices and ‘medicinal plants’ of regional origin is often hampered by technical difficulties during cultivation. Arbuscular mycorrhizal fungi (AMF) can support their host, by helping them to adapt to prevailing local conditions and thus increase the health of the plants.

The aim of the present work was to evaluate the effects of arbuscular mycorrhiza (AMF) on the plant’s health, using St. John’s wort (Hypericum perforatum) - Colletotrichum cf. gloeosporioides (Cfg) as the model plant pathosystem.

Following inoculation with AMF, the attack of St. John’s wort with Cfg led to a clear reduction in wilting of the two St. John’s wort cultivars. Furthermore, the yield of mycor-rhizal plants increased compared to non-mycorrhizal plants, irrespective of whether they were pathogen-infected or not. Compared to non-mycorrhizal plants, in mycorrhizal plants levels of ascorbic acid were elevated and activity of antioxidant enzymes increased after inoculation with Cfg. Furthermore, in mycorrhizal plants the progress in lipid peroxidation following pathogen attack was reduced, suggesting that the reduction of lipid peroxidation and the induction of antioxidants may play a crucial role in the plant’s defense against Cfg.

Keywords

AMF antioxidative enzymes antioxidants lipid peroxidation disease resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel Latef AA, 2011. Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza (ahead of print). Aebi H, 1984. Catalase in vitro. Methods Enzymol 105, 121–126.Google Scholar
  2. Asada K, 1992. Ascorbate peroxidase — a hydrogen peroxidase-scavenging enzyme in plants. Physiol Plantarum 85, 235–241.CrossRefGoogle Scholar
  3. Azcón-Aguilar C, Jaizme-Vega MC & Calvet C, 2002. The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds.) Mycorrhizal technology in agriculture. Birkhäuser-Verlag, Switzerland, pp 187–197.CrossRefGoogle Scholar
  4. Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A & Skoczowski A, 2008. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180, 501–510.CrossRefPubMedGoogle Scholar
  5. Blilou I, Bueno P, Ocampo JA & Garcia-Garrido JM, 2000. Induction of catalase and ascorbate peroxidase activities in tabacco roots inoculated with the arbuscular mycorrhizal Glomus mossae. Mycol Res 104, 722–725.CrossRefGoogle Scholar
  6. Bødker L, Kjøller R, Kristensen K & Rosendahl S, 2002. Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12, 7–12.CrossRefPubMedGoogle Scholar
  7. Buchanan BB, Gruissem W & Jones RL, 2000. Biochemistry & Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, USA.Google Scholar
  8. Campagnac E, Lounès-Hadj Sahraoui A, Debiane D, Fontaine J, Laruelle F, Garçon G, Verdin A, Durand R, Shirali P & Grandmougin-Ferjani A, 2010. Arbuscular mycorrhiza partially protect chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid. Mycorrhiza 20, 167–178.CrossRefPubMedGoogle Scholar
  9. Chaudhary V, Kapoor R & Bhatnagar AK, 2008. Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40, 174–181.CrossRefGoogle Scholar
  10. Chen KM, Gong HJ, Chen GC, Wang SM & Zhang CL, 2004. Gradual drought under field conditions influences the glutathione metabolism, redox balance and energy supply in spring wheat. J Plant Growth Regul 23, 20–28.CrossRefGoogle Scholar
  11. Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Büttner C, Grosch R, Schwarz D & Franken P, 2010. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20, 191–200.CrossRefPubMedGoogle Scholar
  12. Gärber U, 2003. Johanniskrautwelke, Colletotrichum cf. gloeosporioides, Ergebnisse mehrjähriger Forschungsarbeiten im Überblick. Drogenreport 16, 23–28.Google Scholar
  13. Garmendia I, Goicoechea N & Aguirreolea J, 2004. Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against Verticillium wilt. Biol Control 31, 296–305.CrossRefGoogle Scholar
  14. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D & Wipf D, 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20, 519–30.CrossRefPubMedGoogle Scholar
  15. Hossain MA, Nakano Y & Asada K, 1984. Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25, 385–395.Google Scholar
  16. Ijdo M, Cranenbrouck S & Declerck S, 2011. Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21, 1–16.CrossRefPubMedGoogle Scholar
  17. Intra B, Mungsuntisuk I, Nihira T, Igarashi Y & Panbangred W, 2011. Identification of actinomycetes from plant rhizo-spheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease. BMC Research Notes 4, 98.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Johansson JF, Paul LR & Finlay RD, 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48, 1–13.CrossRefPubMedGoogle Scholar
  19. Klapheck S, Zimmer I & Cosse H, 1990. Scavenging of hydrogen peroxide in the endosperm of Ricinus communis by ascorbate peroxidase. Plant Cell Physiol 31, 1005–1013.Google Scholar
  20. Kormanik PP & McGraw AC, 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC, ed. Methods and principles of mycorrhizal research. St Paul, MM, USA: American Phytopathological Society, 37–45.Google Scholar
  21. Knörzer OC, Durner J & Böger P, 1996. Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress. Physiol Plantarum 97, 388–396.CrossRefGoogle Scholar
  22. Kühn H & Borchert A, 2002. Regulation of enzymatic lipid peroxidation: The interplay of peroxidizing and peroxide reducing enzymes. Free Radic Biol Med 33, 154–172.CrossRefPubMedGoogle Scholar
  23. Kuzniak E, Patykowski J & Urbanek H, 1999. Involvement of the antioxidative system in tomato response to fusaric acid treatment. J Phytopathol 147, 385–390.CrossRefGoogle Scholar
  24. Malenčić D, Kiprovski B, Popović M, Prvulović D, Miladinović J & Djordjević V, 2010. Changes in antioxidant systems in soybean as affected by Sclerotinia sclerotiorum (Lib.) de Bary. Plant Physiol Biochem 48, 903–908.CrossRefPubMedGoogle Scholar
  25. McGonigle TP, Miller MH, Evans DG, Fairchild GL & Svan JA, 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115, 495–501.CrossRefGoogle Scholar
  26. Maiti D, Toppo NN & Variar M, 2011. Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.) Mycorrhiza, ahead of print.Google Scholar
  27. Mauch F & Dudler R, 1993. Differential induction of distinct glutathione-S-transferase of wheat by xenobiotics and by pathogen attack. Plant Physiol 102, 1193–1201.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mittova V, Guy M, Tal M & Volokita M, 2004. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55, 1105–1113.CrossRefPubMedGoogle Scholar
  29. Oehl F, Sieverding E, P, Dubois D, Ineichen K, Boller T & Wiemken A, 2004. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138, 574–583.CrossRefPubMedGoogle Scholar
  30. Patykowski J & Urbanek H, 2003. Activity of enzymes related to H2O2 generation and metabolism in leaf apoplastic fraction of tomato leaves infected with Botrytis cinerea. J Phytopathol 151, 153–161.CrossRefGoogle Scholar
  31. Peever L & Higgins V, 1989. Electrolyte leakage, lipoxygenase and lipid peroxidation induced in tomato leaf tissue by specific and non-specific elicitors of Cladosporoium fulvum. Plant Physiol 90, 867–875.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Phippen WB & Simon JE, 2000: Anthocyanin inheritance and instability in purple basil (Ocimum basilicum L.). J Hered 91, 289–296.CrossRefPubMedGoogle Scholar
  33. Sekman AH, Türkan I & Takio S, 2007. Physiol Plant 131, 399–411.CrossRefGoogle Scholar
  34. Sheng M, Tang M, Chen H, Yang B, Zhang F & Huang F, 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18, 287–296.CrossRefPubMedGoogle Scholar
  35. Smith S & Smith FA, 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62, 227–250.CrossRefPubMedGoogle Scholar
  36. Toussaint J-P, Smith FA & Smith SE, 2007. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17, 291–297.CrossRefPubMedGoogle Scholar
  37. Toussaint J-P, Kraml M, Neil M, Smith SE, Smith FA, Steinkellner C, Schmiderer H, Vierheilig H & Novak J, 2008. Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential compounds in basil inoculated with Fusarium oxysporum f.sp. basilica. Plant Pathol 57, 1109–1116.CrossRefGoogle Scholar
  38. Vanacker H, Carver TLW & Foyer CH, 1998. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117, 1103–1114.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wu YX & Tiedemann von A, 2002. Evidence for oxidative stress involved in physiological leaf spot formation in winter and spring barley. Phytopathology 92, 145–155.CrossRefPubMedGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2011

Authors and Affiliations

  • Jana Richter
    • 1
  • Helmut Baltruschat
    • 2
  • Kathrin Kabrodt
    • 1
  • Ingo Schellenberg
    • 1
  1. 1.Center of Life Sciences, Institute of Bioanalytical Sciences (IBAS)Anhalt University of Applied SciencesBernburgGermany
  2. 2.Institute for Phytopathology and Applied Zoology (IPAZ)Justus-Liebig-University GießenGermany

Personalised recommendations