Journal of Plant Diseases and Protection

, Volume 118, Issue 1, pp 31–39 | Cite as

Investigations on herbicide resistance in European silky bent grass (Apera spica-venti) populations



In this study, the results of two-year investigations on herbicide resistance in silky bent grass (Apera spica-venti) populations are presented. Whole-plant bioassays were conducted with different herbicides on over 250 A. spica-venti populations from Central and Eastern European agricultural fields where herbicides failed to achieve satisfactory control. Results showed that over 60% of the suspected populations could be rated resistant to acetolactate synthase (ALS)-inhibitors, resistance to acetyl-CoA (ACCase)-inhibitors could be observed in only a few cases and no resistance to photosystem II (PSII)-inhibitors was detected. Dose-response experiments conducted in the greenhouse on resistant populations with the herbicides flupyrsulfuron-methyl, mesosulfuron+iodosulfuron and fenoxaprop-P-ethyl revealed resistance factors at ED50 and ED90 ranging respectively from 11 to 142, from 2 to 15 and from 4 to 6, thus confirming the prevalence of resistance to ALS-inhibitors in A. spica-venti. In greenhouse experiments, percentage canopy cover after herbicide treatment was determined in susceptible and resistant populations for the herbicides sulfosulfuron and fenoxaprop-P-ethyl by using digital image analysis. A significant effect of herbicide dose on canopy cover was observed in susceptible plants 7 and 15 days after treatment with sulfosulfuron, as well as in all populations when treated with fenoxaprop-P-ethyl. Canopy cover correlated significantly with plant dry weight in all populations, thus indicating that digital image analysis may represent a valid alternative approach to whole-plant bioassays and dose-response analysis for estimating biomass reduction after herbicide treatment. This work provides weed scientists with reliable tools for the verification of herbicide resistance in suspected weed populations.

Key words

ALS-inhibitors canopy cover dose-response experiments digital image analysis dry weight whole-plant bioassays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atwell BJ, Kriedemann PE & Turnbull CGN, 1999. Herbicide resistance: a case of rapid evolution. Plants in action: adaptation in nature, performance in cultivation. Palgrave Macmillan Australia, 608–613.Google Scholar
  2. Balgheim N, Wagner J & Gerhards R, 2007. ALS-inhibitor resistant Apera spica-venti (L.) Beauv. due to target-site mutation. In: Proceedings 2007 14th European Weed Research Society Symposium, Hamar, Norway, 147.Google Scholar
  3. Beckie HJ, Hall LM, Tardif FJ & Seguin-Swartz G, 2007. Acetolactate synthase inhibitor-resistant stinkweed (Thlaspi arvense L.) in Alberta. J Plant Sci 87, 965–972.Google Scholar
  4. Boutsalis P, Karotam J & Powles SB, 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii. Pestic Sci 55, 507–516.Google Scholar
  5. Delabays N, Mermillod C & Bohren C, 2006. First case of resistance to sulfonylurea herbicides reported in Switzerland: a biotype of loose silkybent (Apera spica-venti (L.) Beauv.). J Plant Dis Protect Special issue XX, 139–146.Google Scholar
  6. Delye C, Pernin F & Scarabel L, 2010. Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant Sci (Article in Press, Corrected Proof).Google Scholar
  7. Devine MD & Eberlein CV, 1997. Physiological, biochemical and molecular aspects of herbicide resistance based on altered target sites. Herbicide activity: Toxicology, Biochemistry and Molecular Biology (eds Roe RM, Burton JD & Kuhr MJ) 159–185. IOS Press, Amsterdam, The Netherlands.Google Scholar
  8. Duggleby RG, McCourt JA & Guddat LW, 2008. Structure and mechanisms of inhibition of plant acetohydroxyacid synthase. Plant Physiol 46, 309–324.Google Scholar
  9. Gehring K & Thyssen S, 2011. Unkraut-Steckbrief, Windhalm. Bayerische Landesanstalt für Landwirtschaft, Institut für Pflanzenschutz ( unkrautsteckbrief/08541; last accessed January 25 2011).Google Scholar
  10. Gerowitt B & Heitefuss R, 1990. Requirements and possibilities for weed control according to economic thresholds in cereals. Crop protection in Northern Britain, 55–62.Google Scholar
  11. Hamouzova K, Soukup J, Jursik M, Hamouz P, Venclova P & Tumova P, 2011. Cross-resistance to three frequently used sulfonylurea herbicides in populations of Apera spica-venti from the Czech Republic. Weed Res DOI: 10.1111/ j.13653180.2010.00828.Google Scholar
  12. Heap IM, 2011. International Survey of Herbicide Resistant Weeds. (Available; last accessed January 25 2011).Google Scholar
  13. HRAC, 2011. Herbicide Resistance Action Committee. (Available; last accessed January 24 2011).Google Scholar
  14. Koch W & Hurle K, 1978. Grundlagen der Unkrautbekämpfung. UTB Verlag Stuttgart.Google Scholar
  15. Koeppe MK, Barefoot AC, Cotterman CD, Zimmermann WT & Leep DC, 1998. Bases of selectivity of the Herbicide Flupyrsulfuron- methyl in wheat. Pestic Biochem Phys 59, 105–117.CrossRefGoogle Scholar
  16. Kötter U, 1991. Entwicklung und Konkurrenzverhalten von Windhalm (Apera spica-venti) in Winterweizen und Winterroggen. Gesunde Pflanz 43, 184–189.Google Scholar
  17. Kudsk P, Mathiassen SK & Cotterman JC, 1995. Sulfonylurea resistance in Stellaria media [L.] Vill. Weed Res 35, 19–24.CrossRefGoogle Scholar
  18. Mallory-Smith C & Namuth D, 2011. Overview and Objectives of Herbicide Resistance: Mechanisms, Inheritance & Molecular Genetics. (Available; last accessed January 25 2011).Google Scholar
  19. Marczewska K & Rola H, 2005. Biotypes of Apera spica-venti and Centaurea cyanus resistant to chlorsulfuron in Poland. In: Proceedings 2005 13th EWRS Symposium, Bari, Italy, 197.Google Scholar
  20. Marshall R, Hull R & Moss SR, 2010. Target site resistance to ALS inhibiting herbicides in Papaver rhoeas and Stellaria media biotypes from the UK. Weed Res 50, 621–630.CrossRefGoogle Scholar
  21. Mayor JP & Maillard A, 1997. A wind bent grass biotype resistant to the herbicide isoproturon found in Changins. Rev Suisse Agric 29, 39–44.Google Scholar
  22. Melander B, 1993. Population dynamics of Apera spica-venti as influences by cultural methods. Brighton Crop Protection Conference — Weeds, 107–112.Google Scholar
  23. Melander B, 1995. Impact of drilling date on Apera spica-venti L. and Alopecurus myosuroides Huds. in winter cereals. Weed Res 35, 157–166.CrossRefGoogle Scholar
  24. Moss SR, 2000. The “Rothamsted Rapid Resistance Test” for detecting herbicide-resistance in annual grass-weeds. Weed Sci Soc Am Abstr 40, 102.Google Scholar
  25. Niemann P, 2000. Resistance of silky bentgrass (Apera spica- venti) against Isoproturon. Mitt Biol Bundesanst Land- Forstwirtsch 376, 147–148.Google Scholar
  26. Northam FE & Callihan RH, 1992. The windgrasses (Apera Adans., Poaceae) in North America. Weed Technol 6, 445–450.Google Scholar
  27. Novakova K, Soukup J, Wagner JE, Hamouz P & Namestek J, 2006. Chlorsulfuron resistance in silky bent-grass (Apera spica- venti L. Beauv.) in the Czech Republic. J Plant Dis Protect Special issue XX, 139–146.Google Scholar
  28. Powles SB & Yu Q, 2010. Evolution in action: plants resistant to herbicides. Ann Rev Plant Biol 61, 317–347.CrossRefGoogle Scholar
  29. Rola J, 1990. Dynamik von Unkrautpopulationen auf leichten Böden in Polen. J Plant Dis Protect Sonderheft XII, 97–100.Google Scholar
  30. Saari LL, Cotterman JC & Primiani MM, 1990. Mechanisms of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia. Plant Physiol 93, 55–61.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Scarabel L, Locascio A, Furini A, Sattin M & Varotto S, 2010. Characterisation of ALS genes in the polyploid species Schoenoplectus mucronatus and implications for resistance management Pest Manag Sci 66, 337–344.CrossRefPubMedGoogle Scholar
  32. Sibony M, Michel A, Haas HU, Rubin B & Hurle K, 2001. Sulfometuron-resistant Amaranthus retroflexus: cross-resistance and molecular basis for resistance to acetolactate synthase- inhibiting herbicides. Weed Res 41, 509–522.CrossRefGoogle Scholar
  33. SÖkefeld M, Gerhards R, Öbel H & Therburg RD, 2007. Image acquisition for weed detection and identification by digital image analysis. Precis Agric 6, 523–528.Google Scholar
  34. Soukup J, Novakova K, Hamouz P & Namestek J, 2006. Ecology of silky bent grass (Apera spica-venti (L.) Beauv.), its importance and control in the Czech Republic. J Plant Dis Protect Special issue XX, 73–80.Google Scholar
  35. Streibig JC, 1988. Herbicide bioassay. Weed Res 28, 479–484.CrossRefGoogle Scholar
  36. Streibig JC, Walker A, Blair AM, Anderson-Taylor G, Eagle DJ, Friedländer H, Hacker E, Iwanzik W, Kudsk P, Labhart C, Luscombe BM, Madafiglio G, Nel PC, Pestemer W, Rahman A, Retzlaff G, Rola J, Stefanovic J, Straathof HJM & Thies EP, 1995. Variability of bioassays with metsulfuron-methyl in soil. Weed Res 35, 215–224.CrossRefGoogle Scholar
  37. Szekeres F, 1991. The development of Apera spica-venti. Botanikai-Kozlemeniek 78, 1–2, 113–125.Google Scholar
  38. Tan MK & Medd WR, 2002. Characterisation of the acetolactate synthase (ALS) gene of Raphanus raphanistrum L. and the molecular assay of mutations associated with herbicide resistance. Plant Sci 163, 195–205.CrossRefGoogle Scholar
  39. Tranel PJ, Wright TR & Heap IM, 2011. ALS mutations from herbicide-resistant weeds. (Available com; last accessed January 25 2011).Google Scholar
  40. Yu Q, Zhang XQ, Hashem A, Walsh MJ & Powles SB, 2003. ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Sci 51, 831–838.CrossRefGoogle Scholar
  41. Warwick SI, Thomson BK & Black LD, 1987. Genetic variation in Canadian and European populations of the colonizing weed species Apera spica-venti. New Phytol 106, 301–317.CrossRefGoogle Scholar
  42. Weis M & Gerhards R, 2007. Feature extraction for the identification of weed species in digital images for the purpose of site-specific weed control. Precis Agric 6, 537–544.Google Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2011

Authors and Affiliations

  1. 1.University of HohenheimDepartment of Weed ScienceStuttgartGermany

Personalised recommendations