Journal of Plant Diseases and Protection

, Volume 117, Issue 4, pp 162–167 | Cite as

Monilinia laxa, M. fructigena and M. fructicola: Risk estimation of resistance to QoI fungicides and identification of species with cytochrome b gene sequences

  • S. Miessner
  • G. Stammler


Studies on the gene of the target protein of QoI fungicides (cytochrome b) in Monilinia laxa, M. fructigena and M. fructicola showed that the occurrence of the most important resistance mechanism to QoI fungicides, the G143A mutation, is relatively unlikely in M. laxa and M. fructicola. This is due to the presence of an intron sequence directly after codon 143. A mutation in codon 143 would presumably lead to incorrect mRNA maturation and consequently to a non-functional protein. No introns were found directly before or after codon 143 in M. fructigena, therefore the G143A mutation may be possible. Intron sequences have not been detected in immediate vicinity to the codons 129 and 137 in all three species, so the occurrence of the mutations F129L and G137R could be possible. Based on the differences in the intron-exon organization of the cytochrome b gene, a rapid, sensitive and reliable PCR assay for identification and differentiation of the 3 Monilinia species was developed.

Key words

fungicide resistance Monilinia fructicola Monilinia fructigena Monilinia laxa PCR detection assay QoI fungicides 

Monilinia laxa, M. fructigena und M. fructicola: Resistenzrisiko gegenüber QoI Fungiziden und Artidentifizierung anhand von Cytochrom b Sequenzen


Untersuchungen zum Gen des Zielproteins der QoI-Fungizide (Cytochrom b) in Monilinia laxa, M. fructigena und M. fructicola ergaben eine geringe Wahrscheinlichkeit, dass sich der wichtigste Resistenzmechanismus gegenüber QoI-Fungiziden, die Mutation G143A, in M. laxa und M. fructicola ausprägt. Dies ist durch eine Intronsequenz bedingt, die direkt nach dem Codon 143 beginnt. Eine Mutation im Codon 143 würde vermutlich zu einer fehlerhaften mRNA-Reifung und konsequenterweise zu einem nicht funktionellen Protein führen. In M. fructigena wurde keine Intron-Sequenz direkt vor oder nach dem Codon 143 gefunden, daher ist eine G143A Mutation in M. fructigena möglich. In unmittelbarer Nähe der Codons 129 und 137 sind in allen 3 Monilinia-Arten keine Intron- Sequenzen vorhanden, weswegen die Mutationen F129L und G137R auftreten können. Die Unterschiede in der Intron- Exon-Organisation ermöglichten die Entwicklung eines PCR-Verfahrens zur schnellen, sensitiven und sicheren Identifizierung und Unterscheidung dieser 3 Monilinia-Arten.


Fungizid-Resistenz Monilinia fructicola Monilinia fructigena Monilinia laxa PCR-Nachweisverfahren QoI-Fungizide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Byrde, R.J.W., H.J. Willetts, 1977: The brown rot fungi of fruit: Their biology and control. Pergamon Press, Oxford, UK.Google Scholar
  2. Cote, M.J., M.C. Tardif, A.J. Meldrun, 2004: Identification of Monilinia fructigena, M. fructicola, M. laxa and M. polystroma on inoculated and naturally infected fruit using multiplex PCR. Plant Dis. 88, 1219–1225.CrossRefGoogle Scholar
  3. Drobny, H.G., U. Bachem, B. Perotin, O. Vincent, S. Pierre, 2008: Protective and curative activity of ACANTO® (picoxystrobin) against sensitive and resistant (F129L) strains of Pyrenophora teres and Rhynchosporium secalis on barley compared to other strobilurin and triazole fungicides. Mitt. Julius Kühn-Inst. 412, 169 (Abs.).Google Scholar
  4. Elmer, P.A.G., R.E. Gaunt, 1994: The biological characteristics of dicarboximide resistant isolates of Monilinia fructicola from New Zealand stone fruit orchards. Plant Pathol. 43, 130–137.CrossRefGoogle Scholar
  5. Grasso, V., H. Sierotzki, A. Garibaldi, U. Gisi, 2006a: Characterization of the cytochrome b gene fragment of Puccinia species responsible for the binding site of QoI fungicides. Pestic. Biochem. Physiol. 84, 72–82.CrossRefGoogle Scholar
  6. Grasso, V., S. Palermo, H. Sierotzki, A. Garibaldi, U. Gisi, 2006b: Cytochrome b gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens. Pest Manage. Sci. 62, 465–472.CrossRefGoogle Scholar
  7. Ioos, R., P. Frey, 2000: Genomic variation within Monilinia laxa, M. fructigena and M. fructicola, and application to species identification by PCR. Eur. J. Plant Pathol. 106, 373–378.CrossRefGoogle Scholar
  8. Koch, A., J. Cordero, M. Semar, D. Strobel, G. Stammler, 2008: Wheat brown rust in Europe 2007: Efficacy of different fungicides and studies in the sensitivity. Mitt. Julius Kühn-Inst. 412, 457 (Abs.).Google Scholar
  9. Kuck, K.H., P.E. Russell, 2006: FRAC: Combined resistance risk assessment. Asp. Appl. Biol. 78, 3–10.Google Scholar
  10. Luo, C.X., K.D. Cox, A. Amiri, G. Schnabel, 2008: Occurrence and detection of the DMI resistance-associated genetic element ‘Mona’ in Monilinia fructicola. Plant Dis. 92, 1099–1103.CrossRefGoogle Scholar
  11. Mercier, V., G. Martinot, H. Deplaude, 2009: Monilioses du pecher, determiner les especes et evaleur leur repartition. Phytoma 626, 45–48.Google Scholar
  12. Ma, Z.H., M.A. Yoshimura, B.A. Holtz, T.J. Michaelidis, 2005: Characterization and PCR-based detection of benzimidazole- resistant isolates of Monilinia laxa in California. Pest Manage. Sci. 61, 449–457.CrossRefGoogle Scholar
  13. Ma, Z.H., M.A. Yoshimura, T.J. Michaelidis, 2003: Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California. Appl. Environ. Mcrobiol. 69, 7145–7152.CrossRefGoogle Scholar
  14. Ma, Z.H., T.J. Michaelidis, 2003: Nested PCR assays for detection of Monilinia fructicola in stone fruits orchards and Botrytosphaeria dothidea from pistachios in California. J. Phytopathol. 151, 312–322.CrossRefGoogle Scholar
  15. OEPP/EPPO, 2009: Normes OEPP-Diagnostic/EPPO Standards- Diagnostics PM 7/18(2): Monilinia fructicola. EPPO Bull. 39, 337–343.CrossRefGoogle Scholar
  16. Pasche, J.S., L.M. Piche, N.C. Gudmestad, 2005: Effect of the F129L mutation in Alternaria solani on fungicides affecting mitochondrial respiration. Plant Dis. 89, 269–278.CrossRefGoogle Scholar
  17. Penrose, L.J., W. Koffmann, M.R. Nicholls, 1985: Field occurrence of vinclozolin resistance in Monilinia fructicola. Plant Pathol. 34, 228–234.CrossRefGoogle Scholar
  18. Semar, M., D. Strobel, A. Koch, K. Klappach, G. Stammler, 2007: Field efficacy of pyraclostrobin against populations of Pyrenophora teres containing the F129L mutation in the cytochrome b gene. J. Plant Dis. Protect. 114, 117–119.CrossRefGoogle Scholar
  19. Sierotzki, H., R. Frey, J. Wullschleger, S. Palermo, S. Karlin, J. Godwin, U. Gisi, 2007: Cytochrome b gene sequence and structure of Pyrenophora teres and Pyrenophora tritici-repentis and implications for QoI resistance. Pest Manage. Sci. 63, 225–233.CrossRefGoogle Scholar
  20. Stammler, G., W. Zeller, 1989: Die Monilia-Krankheit an Süßkirschen. Obst und Garten 108, 543–545.Google Scholar
  21. Stammler, G., D. Strobel, M. Semar, K. Klappach, 2006: Diagnostics of fungicide resistance and relevance of laboratory data for the field. Asp. Appl. Biol. 78, 29–36.Google Scholar
  22. Van Brouwershaven, I.R., M.L. Bruil, G.C.M. Van Leeuwen, L.F.F. Kox, 2009: A real time (TaqMan) PCR assay to differentiate Monilinia fructicola from other three brown rot fungi of fruit crops. Plant Pathol. (published online Dec. 2009 DOI: 10.1111/j.1365-3059.2009.02220.x).Google Scholar
  23. Zehr, E.I., L.A. Luscz, W.C. Olien, W.C. Newall, J.E. Toler, 1999: Reduced sensitivity in Monilinia fructicola to propiconazole following prolonged exposure in peach orchards. Plant Dis. 83, 913–916.CrossRefGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2010

Authors and Affiliations

  1. 1.BASF SE, Agricultural CentreLimburgerhofGermany

Personalised recommendations