Journal of Plant Diseases and Protection

, Volume 117, Issue 3, pp 112–116 | Cite as

A novel role of ammonia in appressorium formation of Alternaria alternata (Fries) Keissler, a tobacco pathogenic fungus

  • W. J. Duan
  • X. Q. Zhang
  • T. Z. YangEmail author
  • X. W. Dou
  • T. G. Chen
  • S. J. Li
  • S. J. Jiang
  • Y. J. Huang
  • Q. Y. Yin


Alternaria alternata (Fries) Keissler is a facultative parasitic fungus which causes brown spot disease of senescing tobacco (Nicotiana tabacum L.) leaves. To test whether ammonia accumulation at the infection site plays a role in differentiation of infection structures and lifestyle transition of A. alternata, an artificial ammonia environment was set up to imitate and manipulate the host ammonia environment that pathogens would encounter both on leaf cuticle and in extracellular spaces. Light microscopy showed that, within 6 h after ammonia exposure, appressoria and penetration pegs could be detected at the tips of germ tubes incubated on glass slides and on host leaf surfaces, and foliar epidermal cells influenced by appressoria turned chlorotic and necrotic. Neither appressorium formation nor necrotic lesion was found in control experiments (ammonia free). Moreover, a compatible interaction between A. alternata and a resistant tobacco cultivar Jingyehuang was induced by ambient ammonia, resulting in expanding, ring-like lesions on its excised leaves within 60 h. In the absence of ammonia treatment, however, no spot symptoms could be found on the leaves of a susceptible cultivar K326 during the same period. These results suggest that A. alternata can respond to ambient ammonia and use it as a stimulator to invade the host by differentiating into infection structures and to switch to a necrotrophic lifestyle, next to secrete pathogenicity factors.

Key words

Alternaria alternata (Fries) Keissler ammonia appressorium differentiation brown spot disease tobacco-Alternaria interaction Nicotiana tabacum L. 

Eine neue Rolle von Ammoniak bei der Appressoriumsbildung von Alternaria alternata (Fries) Keissler an Tabak


Alternaria alternata (Fries) Keissler ist ein obligat parasitischer Pilz, der die Braunfleckenkrankheit an alternden Blättern des Tabaks (Nicotiana tabacum L.) verursacht. Zur Untersuchung, ob die Anreicherung von Ammoniak an der Infektionsstelle eine Rolle bei der Bildung pilzlicher Infektionsstrukturen und der Umstellung der Ernährungsweise von A. alternata spielt, wurden die Bedingungen artifiziell imitiert und manipuliert, denen das Pathogen auf der Blattcuticula und im Interzellularraum des Wirtes im Hinblick auf Ammoniak ausgesetzt ist. Lichtmikroskopische Beobachtungen zeigten, dass Appressorien und Infektionsschläuche während der ersten 6 Stunden nach der Zugabe von Ammoniak an der Spitze von Keimschläuchen auf Objektträgern und Blattoberflächen nachweisbar waren. Epidermale Blattzellen chlorotisierten und nekrotisierten dann als Reaktion auf die Appressorienbildung. Weder Appressorien noch nekrotische Läsionen bildeten sich in den nicht mit Ammoniak behandelten Kontrollen. Darüber hinaus wurde eine kompatible Interaktion zwischen A. alternata und der resistenten Tabaksorte Jingyehuang durch Ammoniakzugabe induziert. Sie resultierte in größer werdenden, ringförmigen Läsionen auf abgeschnittenen Tabakblättern innerhalb der ersten 60 Stunden nach der Behandlung. Im gleichen Zeitraum konnten keine Symptome auf Blättern der nicht mit Ammoniak behandelten, anfälligen Sorte K326 beobachtet werden. Die Ergebnisse deuten darauf hin, dass A. alternata durch Ammoniak stimuliert wird und den Wirt durch die Bildung von Infektionsstrukturen und die Umstellung auf eine nekrotrophe Ernährungsweise mit einhergehender Sekretion von Pathogenitätsfaktoren infiziert.


Alternaria alternata (Fries) Keissler Ammoniak Appressoriumsdifferenzierung Braunfleckenkrankheit Tabak-Alternaria-Interaktion Nicotiana tabacum L. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burkhardt, J., R. Eiden, 1994: Thin water films on coniferous needles. Atmos. Environ. 28, 2001–2017.CrossRefGoogle Scholar
  2. Farrar, J.F., 1995: Just another sink? Sources of assimilate for foliar pathogens. Asp. Appl. Biol. 42, 81–89.Google Scholar
  3. Flaishman, M.A., P.E. Kolattukudy, 1994: Timing of fungal invasion using host’s ripening hormone as a signal. Proc. Natl. Acad. Sci. USA 91, 6579–6583.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Glazebrook, J., 2005: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227.CrossRefPubMedGoogle Scholar
  5. Govrin, E.M., A. Levine, 2000: The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10, 751–757.CrossRefPubMedGoogle Scholar
  6. Hammond-Kosack, K.E., P. Silverman, I. Raskin, D.A. Jones, 1996: Race-specific elicitors of Cladsporium fulvum induce changes in cell morphology and the synthesis of ethylene and salicylic acid in tomato plants carrying the corresponding Cf disease resistance gene. Plant Physiol. 110, 1382–1394.Google Scholar
  7. Hoffland, E., M.G. Jeger, M.L. van Beusichem, 2000: Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen. Plant Soil 218, 239–247.CrossRefGoogle Scholar
  8. Huber, D.M., R.D. Watson, 1974: Nitrogen form and plant disease. Annu. Rev. Phytopathol. 12, 139–165.CrossRefPubMedGoogle Scholar
  9. Husted, S., M. Mattsson, J.K. Schjoerring, 1996: Ammonia compensation points in two cuitivars of Hordeum vulgare L. during vegetative and generative growth. Plant Cell Environ. 19, 1299–1306.CrossRefGoogle Scholar
  10. Jensen, B., L. Munk, 1997: Nitrogen induced changes in colony density and spore production of Erysiphe graminis f.sp. hordei on seedlings of six spring barley cultivars. Plant Pathol. 46, 191–202.CrossRefGoogle Scholar
  11. Kolattukudy, P.E., L.M. Rogers, D. Li, C.S. Hwang, M.A. Flaishman, 1995: Surface signaling in pathogenesis. Proc. Natl. Acad. Sci. USA 92, 4080–4087.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kramer-Haimovich, H., E. Servi, T. Katan, J. Rollins, Y. Okon, D. Prusky, 2006: Effect of ammonia production by Colletotrichum gloeosporioides on pelB activation, pectate lyase secretion, and fruit pathogenicity. Appl. Environ. Microbiol. 72, 1034–1039.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lamondia, J.A., 2001: Outbreak of brown spot of tobacco caused by Alternaria alternata in Connecticut and Massachusetts. Plant Dis. 85, 230.CrossRefGoogle Scholar
  14. Long, D.H., F.N. Lee, D.O. Tebeest, 2000: Effect of nitrogen fertilization on disease progress of rice blast on susceptible and resistant cultivars. Plant Dis. 84, 403–409.CrossRefGoogle Scholar
  15. Lawrence, C.B., T.K. Mitchell, R.A. Cramer, K.D. Craven, Y. Cho, K.H. Kim, 2008: At death’s door: Alternaria pathogenicity mechanisms. Plant Pathol. J. 24, 101–111.CrossRefGoogle Scholar
  16. Lucas, G.B., 1971: Alternaria alternata (Fries) Keissler, the correct name for A. tenuis and A. logipes. Tob. Sci. 15, 37–42.Google Scholar
  17. Lucas, G.B., 1975: Diseases of Tobacco, 3rd edition. Raleigh, NC, USA.Google Scholar
  18. Marschner, H., 1995: Relationship between mineral nutrition and plant diseases and pests. In: H. Marschner (ed.): Mineral Nutrition of Higher Plants. 2nd edition, pp. 436–460. Academic Press, San Diego, London.CrossRefGoogle Scholar
  19. Neumann, S., N.D. Paveley, F.D. Beed, R. Sylvester-Bradley, 2004: Nitrogen per unit area affects the upper asymptote of Puccinia striiformis f. sp. tritici epidemics in winter wheat. Plant Pathol. 53, 725–732.CrossRefGoogle Scholar
  20. Podila, G.K., L.M. Rogers, P.E. Kolattukudy, 1993: Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiol. 103, 267–272.PubMedPubMedCentralGoogle Scholar
  21. Prusky, D., A. Lichter, 2008: Mechanisms modulating fungal attack in post-harvest pathogen interactions and their control. Eur. J. Plant Pathol. 121, 281–289.CrossRefGoogle Scholar
  22. Prusky, D., J.L. McEvoy, B. Leverentz, W.S. Conway, 2001: Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence. Mol. Plant-Microbe Interact. 14, 1105–1113.CrossRefPubMedGoogle Scholar
  23. Robert, C., M.-O. Bancal, C. Lannou, 2002: Wheat leaf rust uredospore production and carbon and nitrogen export in relation to lesion size and density. Phytopathology 92, 762–768.CrossRefPubMedGoogle Scholar
  24. Robert, C., M.-O. Bancal, B. Ney, C. Lannou, 2005: Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. New Phytol. 165, 227–241.CrossRefPubMedGoogle Scholar
  25. Schjoerring, J.K., A. Kyllingsbaek, J.V. Mortensen, S. Byskovnielsen, 1993: Field investigations of ammonia exchange between barley plants and the atmosphere. II. Nitrogen remobilization, free ammonium content and activities of ammonium. Plant Cell Environ. 16, 169–178.CrossRefGoogle Scholar
  26. Slavov, S., S. Mayama, A. Atanassov, 2004: Some aspects of epidemiology of Alternaria alternata tobacco pathotype. Biotechnol. Biotec. Eq. 18, 85–89.CrossRefGoogle Scholar
  27. Sparks, J.P., 2009: Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia 159, 1–13.CrossRefPubMedGoogle Scholar
  28. Staples, R.C., H.C. Hoch, 1987: Infection structures-form and function. Exp. Mycol. 11, 163–169.CrossRefGoogle Scholar
  29. Sutton, M.A., J.K. Burkhardt, D. Guerin, E. Nemitz, D. Fowler, 1998: Development of resistance models to describe measurements of bi-directional ammonia surface atmosphere exchange. Atmos. Environ. 32, 473–480.CrossRefGoogle Scholar
  30. Sutton, M.A., D. Fowler, J.B. Moncrieff, 1993: The exchange of atmospheric ammonia with vegetated surfaces. I. Unfertilized vegetation. Q. J. Roy. Meteor. Soc. 119, 1023–1045.CrossRefGoogle Scholar
  31. Thomma, B.P.H.J., 2003: Pathogen profile: Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol. 4, 225–236.CrossRefPubMedGoogle Scholar
  32. Van Hove, L.W.A., E.H. Adema, W.J. Vredenberg, G.A. Pieters, 1989: A study of the adsorption of NH3 and SO2 on leaf surfaces. Atmos. Environ. 23, 1479–1486.CrossRefGoogle Scholar
  33. Van Loon, L.C., B.P. Geraats, H.J. Linthorst, 2006: Ethylene as a modulator of disease resistance in plants. Trends Plant Sci. 11, 184–191.CrossRefPubMedGoogle Scholar
  34. Von Tiedemann, A., 1996: Single and combined effects of nitrogen fertilization and ozone on fungal leaf diseases on wheat. Z. Pflanzenk. Pflanzen. 103, 409–419.Google Scholar
  35. Yakimova, E.T., Z.P. Yordanova, S. Slavov, V.M. Kapchina-Toteva, E.J. Woltering, 2009: Alternaria alternata AT toxin induces programmed cell death in tobacco. J. Plant Pathol. 157, 592–601.Google Scholar
  36. Yakoby, N., I. Kobiler, A. Dinoor, D. Prusky, 2000: pH regulation of pectate lyase secretion modulates the attack of Colletotrichum gloeosporioides on avocado fruits. Appl. Environ. Microbiol. 66, 1026–1030.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Yamulki, S., R.M. Harrison, K.W.T. Goulding, 1996: Ammonia surface-exchange above an agricultural field in southeast England. Atmos. Environ. 30, 109–118.CrossRefGoogle Scholar
  38. Zhang, M.H., J.R. Zhang, W.X. Jia, Y. Zhao, R. Ma, 1998: The Relationship between maturity or senescence of tobacco leaves and brown spot. Acta Phytopathol. Sinica 28, 49–54.Google Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2010

Authors and Affiliations

  • W. J. Duan
    • 1
    • 2
  • X. Q. Zhang
    • 1
  • T. Z. Yang
    • 1
    Email author
  • X. W. Dou
    • 1
  • T. G. Chen
    • 2
  • S. J. Li
    • 2
  • S. J. Jiang
    • 3
  • Y. J. Huang
    • 4
  • Q. Y. Yin
    • 1
  1. 1.College of Tobacco ScienceHenan Agricultural UniversityZhengzhouChina
  2. 2.Tobacco Institute of Henan Academy of Agricultural SciencesXuchangChina
  3. 3.College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
  4. 4.Henan Tobacco CompanyZhengzhouChina

Personalised recommendations