Journal of Plant Diseases and Protection

, Volume 117, Issue 3, pp 97–101 | Cite as

Effect of the disodium salt of cyclopentene β,β′-triketone on the development of infections induced by TMV in the leaves of hypersensitive and susceptible tobacco plants

  • A. ReunovEmail author
  • L. Lapshina
  • V. Nagorskaya
  • O. Shestak
  • V. Novikov


We show here that the disodium salt of 2-acetyl-5-chloro-4- hydroxycarbonylmethylthiocyclopent-4-ene-1,3-dione (salt 2) inhibits tobacco mosaic virus (TMV)-induced infections in detached leaves of TMV-resistant (Xanthi-nc) and -susceptible (Samsun) varieties of Nicotiana tabacum L. Inoculation of Xanthi-nc leaves with TMV mixed with salt 2 (2 mg/ml) resulted in a significant decrease (78%) in the number of local lesions as compared to leaves inoculated with TMV alone. By applying the salt immediately before or after infection, the inhibitory effect on the number of lesions decreased. The infectivity and content of viral antigen in Samsun leaves inoculated with a mixture of TMV and salt 2 were considerably less early in infection compared to leaves inoculated with TMV only. As the infection progressed, the inhibitory action of salt 2 decreased. Applying the salt 24 h before infection enhanced the number of both local and heat-induced lesions in Xanthi-nc and Samsun leaves, respectively, that is increased the number of “infectious centers” produced on the leaf surface, which probably promoted virus penetration into the host cells. At the same time, pretreatment decreased the infectivity in Xanthi-nc leaf lesions and infectivity and viral antigen accumulation in Samsun leaves. Therefore, the antiviral effects of salt 2 are not because of diminished penetration of the virus into cells, but seem to be caused by salt 2-mediated inhibition of virus replication.

Key words

antiviral activity Nicotiana tabacum disodium salt of 2-acetyl-5-chloro-4-hydroxycarbonylmethylthiocyclopent-4-ene-1,3-dione tobacco mosaic virus 

Einfluss des Dinatrium-Salzes von Cyclopenten-ß-ß′-Triketon auf die Infektion hypersensitiver und anfälliger Tabakblätter mit TMV


Wir können in dieser Untersuchung zeigen, dass das Dinatrium- Salz von 2-Acetyl-5-chlor-4-hydroxycarbonylmethylthiocyclopent- 4-en-1,3-dion (Salz 2) die Infektion abgeschnittener Blätter Tabakmosaikvirus (TMV)-resistenter (Xanthi-nc) und -anfälliger (Samsun) Sorten von Nicotiana tabacum L. durch das TMV hemmt. Die Inokulation von Xanthi-nc-Blättern mit einer Mischung von TMV und dem Salz 2 (2 mg ml–1) resultierte in einer signifikanten Verminderung (78%) lokaler Blattläsionen im Vergleich zu nur mit dem Virus inokulierten Blättern. Bei Anwendung des Salzes unmittelbar vor oder nach einer Infektion verminderte sich die hemmende Wirkung auf die Anzahl der Läsionen wieder. Die Infektiösität und der Gehalt an viralen Antigenen in mit einer Mischung von TMV und dem Salz 2 inokulierten Blättern der anfälligen Sorte Samsun waren im Vergleich mit nur mit dem Virus inokulierte Blättern deutlich reduziert. Im Verlauf einer fortschreitenden Infektion nahm die Hemmwirkung des Salzes 2 ab. Die Anwendung des Salzes 24 h vor einer TMV-Infektion erhöhte die Anzahl lokaler und hitzeinduzierter Blattläsionen in Xanthi-nc und Samsun. Die Anzahl dieser auf der Blattoberfläche gebildeten „Infektionszentren” förderte wohl das Eindringen der Viren in die Pflanzenzellen. Zum selben Zeitpunkt verminderte eine Vorbehandlung die Infektiosität in Xanthi-nc-Blattläsionen und sowohl die Infektiosität als auch die Akkumulation viraler Antigene in Samsun-Blättern. Die antiviralen Effekte des Salzes 2 resultieren daher nicht aus einem verminderten Eindringen des Virus in die Zellen, sondern scheinbar aus einer Salz-2-beeinflussten Störung der Virusreplikation.


2-Acetyl-5-chlor-4-hydroxycarbonylmethylthiocyclopent-4-en-1,3-dion-Dinatrium-Salz antivirale Aktivität Nicotiana tabacum Tabakmosaikvirus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balazs, E., Z. Kiraly, 1981: Virus content and symptom expression in Samsun tobacco treated with kinetin and a benzimidazole derivative. Phytopathol. Z. 100, 356–360.CrossRefGoogle Scholar
  2. Barabanova, A.O., I.M. Yermak, A.V. Reunov, V.P. Nagorskaya, T.F. Solov’eva, 2006: Carrageenans, sulphated polysaccharides from red algae as inhibitors of tobacco mosaic virus. Plant Resour. 42, 80–86 (in Russian).Google Scholar
  3. Birch, A.J., 1951: β-Triketones. 1. The structures of angustione, dehydroangustione, calythrone, and flavaspidic acid. J. Chem. Soc. 11, 3026–3030.CrossRefGoogle Scholar
  4. Elyakova, L.A., V.V. Isakov, L.A. Lapshina, V.P. Nagorskaya, G.N. Lichatskaya, T.N. Zvyagintseva, A.V. Reunov, 2007: Enzyme transformation of biologically active 1,3;1,6-β-D-glucan. Structure and activity of resulting fragments. Biochemistry (Moscow) 72, 29–36.CrossRefGoogle Scholar
  5. Foster, J.A., A.F. Ross, 1975: The detection of symptomless virus-infected tissue in inoculated tobacco leaves. Phytopathology 65, 600–610.CrossRefGoogle Scholar
  6. Fraser, R.S.S., R.J. Whenham, 1978: Inhibition of the multiplication of tobacco mosaic virus by methylbenzimidazol-2-ylcarbamate. J. Gen. Virol. 39, 191–194.CrossRefGoogle Scholar
  7. Gilardoni, G., M. Clericuzio, S. Tosi, G. Zanoni, G. Vidari, 2007: Antifungal acylcyclopentenediones from fruiting bodies of Hygrophorus chrysodon. J. Nat. Prod. 70, 137–139.CrossRefPubMedGoogle Scholar
  8. Kiang, A.K., H.H. Lee, K.Y. Sim, 1962: The structure of linderone and methyl-linderone. J. Chem. Soc. 11, 4338–4345.CrossRefGoogle Scholar
  9. Kintia, P.K., G.V. Lazu’evsky, N.N. Balashova, I.T. Balashova, A.I. Suruzhiu, V.A. Lyach, 1987: Structure and Biological Activity of Spirostane and Furostane Steroid Glicosides. Shtiintsa, Kishinev (in Russian).Google Scholar
  10. Kopp, M., J. Rouster, B. Fritig, A. Darvill, P. Albersheim, 1989: Host-pathogen interactions. XXXII. A fungal glucan preparation protects Nicotiana against infection by viruses. Plant Physiol. 90, 208–216.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Lapshina, L.A., A.V. Reunov, V.P. Nagorskaya, T.N. Zvyagintseva, N.M. Shevchenko, 2006a: Inhibitory effect of fucoidan from alga Fucus evanescens on the spread of infection induced by tobacco mosaic virus in tobacco leaves of two cultivars. Russ. J. Plant Physiol. 53, 246–251.CrossRefGoogle Scholar
  12. Lapshina, L.A., O.P. Shestak, A.V. Reunov, V.L. Novikov, M.M. Anisimov, 2006b: Antiviral activity of some analogues of natural cyclopentene β,β’-triketones. Plant Resour. 42, 107–113 (in Russian).Google Scholar
  13. Lee, H.H., 1968: The structure of lucidone and metyl-lucidone. Tetrahedron Lett. 40, 4243–4246.CrossRefGoogle Scholar
  14. Li, X.-C., O. Ferreira, M.R. Jacob, R. Zhang, S.I. Khan, H.N. Elsohly, D.G. Nagle, T.J. Smillie, I.A. Khan, L.A. Walker, A.M. Clark, 2004: Antifungal cyclopentenediones from Piper coruscans. J. Am. Chem. Soc. 126, 6872–6873.CrossRefPubMedGoogle Scholar
  15. Lyon, G.D., T. Reglinski, A.C. Newton, 1995: Novel disease control compounds: the potential to “immunize” plants against infection. Plant Pathol. 44, 407–427.CrossRefGoogle Scholar
  16. Matthews, R.E.F., 1981: Plant Virology. Second edition. Academic Press, New York, London, Toronto, Sydney, San Francisco.Google Scholar
  17. Mayhew, D.E., R.E. Ford, 1971: An inhibitor of tobacco mosaic virus produced by Physarum polycephalum. Phytopathology 61, 636–640.CrossRefGoogle Scholar
  18. Otsuki, Y., I. Takebe, T. Onho, M. Fukuda, Y. Okada, 1977: Reconstitution of tobacco mosaic virus rods occurs bidirectionally from an internal initiation region: demonstration by electron microscopic serology. Proc. Natl. Acad. Sci. USA. 74, 1913–1917.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pospieszny, H., S. Chirkov, J. Atabekov, 1991: Induction of antiviral resistance in plant by chitosan. Plant Sci. 79, 63–68.CrossRefGoogle Scholar
  20. Reunov, A.V., 1999: Virus Pathogenesis and Protective Mechanisms of Plants. Dalnauka, Vladivostok (in Russian).Google Scholar
  21. Reunov, A.V., L.A. Lapshina, V.P. Nagorskaya, L.A. Elyakova, 1996: Effect of 1,3;1,6-β-D-glucan on infection of detached tobacco leaves with tobacco mosaic virus. J. Phytopathol. 144, 247–249.CrossRefGoogle Scholar
  22. Reunov, A.V., L.A. Lapshina, V.P. Nagorskaya, T.N. Zvyagintseva, N.M. Shevchenko, 2009: Effect of fucoidan from the brown alga Fucus evanescens on the development of infection induced by potato virus X in Datura stramonium L. leaves. J. Plant Dis. Protect. 116, 49–54.CrossRefGoogle Scholar
  23. Reunov, A., V. Nagorskaya, L. Lapshina, I. Yermak, A. Barabanova, 2004: Effect of k/ß-carrageenan from red alga Tichocarpus crinitus (Tichocarpaceae) on infection of detached tobacco leaves with tobacco mosaic virus. J. Plant Dis. Protect. 111, 165–172.Google Scholar
  24. Rouhier, P., M. Kopp, V. Begot, M. Bruneteau, B. Fritig, 1995: Structural features of fungal β-D-glucans for the efficient inhibition of the initiation of virus infection on Nicotiana tabacum. Phytochemistry 39, 57–62.CrossRefPubMedGoogle Scholar
  25. Schuster, G., 1987: Antiphytovirale Wirkungen von 1,5-Diacetyl- 2,4-dioxohexahydro-1,3,5-triazin (DA-DHT). Phytopathol. Z. 119, 262–271.CrossRefGoogle Scholar
  26. Slováková, L., D. Liškova, P. Capek, M. Kuba Kova, D. Kákoniová, Š. Karácsonyi, 2000: Defence responses against TNV infection induced by galactoglucomannan-derived oligosaccharides in cucumber cells. Eur. J. Plant Pathol. 106, 543–553.CrossRefGoogle Scholar
  27. Stübler, D., H. Buchenauer, 1996a: Antiviral activity of the glucan lichenan (poly-β1→3, 1→4D-anhydroglucose) 1. Biological activity in tobacco plants. J. Phytopathol. 144, 37–43.CrossRefGoogle Scholar
  28. Stübler, D., H. Buchenauer, 1996b: Antiviral activity of the glucan lichenan (poly-β1→3, 1→4D-anhydroglucose) 2. Studies on the mode of action. J. Phytopathol. 144, 45–52.CrossRefGoogle Scholar
  29. Šubíková, V., L. Slováková, V. Farkaš, 1994: Inhibition of tobacco necrosis virus infection by xyloglucan fragments. Z. Pflanzenk. Pflanzen. 101, 128–131.Google Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2010

Authors and Affiliations

  • A. Reunov
    • 1
    Email author
  • L. Lapshina
    • 1
  • V. Nagorskaya
    • 1
  • O. Shestak
    • 1
  • V. Novikov
    • 1
  1. 1.Pacific Institute of Bioorganic ChemistryFar East Branch of Russian Academy of SciencesVladivostokRussia

Personalised recommendations