Advertisement

Journal of Plant Diseases and Protection

, Volume 117, Issue 3, pp 9–14 | Cite as

Effects of elevated CO2 and temperature on interactions of grapevine and powdery mildew: first results under phytotron conditions

  • M. PuglieseEmail author
  • M. L. Gullino
  • A. Garibaldil
Article
  • 10 Downloads

Abstract

This study reports the effect of increased CO2 and temperature on powdery mildew (Erysiphe necatrix) of grapevine evaluated under controlled conditions. Grapevine potted plants, belonging to the cv Moscato and Barbera, were grown in phytotrons under four different simulated climatic conditions: standard CO2 concentration for the area (450 ppm) with standard (ranging from 22 to 26°C) and elevated temperature (4°C higher than standard), elevated CO2 (800 ppm) with standard and elevated temperature. Physiological responses of grapevine and pathogen development were studied. Results showed an increase of the chlorophyll content with higher temperatures and CO2 concentration, to which consequently corresponded an higher fluorescence index. Disease incidence did not significantly vary between cultivars. In conclusion, an increase in CO2 did not affect powdery mildew incidence, probably due to the increased photosynthetic activity of plants under such conditions.

Key words

climate change cv Moscato cv Barbera Erysiphe necatrix global warming Vitis vinifera 

Einfluss von erhöhtem CO2-Gehalt und Temperatur auf die Wirt-Pathogen-Beziehung von Weinreben und Echtem Mehltau: erste, im Klimaschrank gewonnene Ergebnisse

Zusammenfassung

Diese Untersuchung beschreibt den Einfluss von erhöhter Temperatur und erhöhtem CO2-Gehalt auf den Echten Mehltau der Weinrebe (Erysiphe necatrix) unter kontrollierten Bedingungen. Getopfte Weinreben der Sorten Moscato und Barbera wurden in Klimaschränken unter vier verschiedenen Simulationsbedingungen angezogen: die regionale Standard- CO2-Konzentration (450 ppm) mit entweder (1.) Standard- Temperatur zwischen 22 to 26°C oder (2.) um 4°C erhöhter Temperatur, oder erhöhter CO2-Konzentration (800 ppm) mit (3.) Standard- oder (4.) erhöhter Temperatur. Unter diesen Bedingungen wurden physiologische Reaktionen des Weins und die Entwicklung des Pathogens untersucht. Dr Chlorophyllgehalt der Weinblätter stieg mit zunehmender Temperatur und CO2-Konzentration, was mit einem höheren Fluoreszenzindex einherging. Die Befallsstärke zeigte keine signifikanten Sortenunterschiede. Aus den Ergebnissen kann gefolgert werden, dass erhöhte CO2-Gehalte die Befallsstärke des Echten Mehltaus der Weinrebe nicht erhöhen, was möglicherweise auf die erhöhte Photosyntheseaktivität der Pflanzen unter diesen Bedingungen zurückzuführen ist.

Stichwörter

cv. Moscato cv. Barbera Erysiphe necatrix globale Erwärmung Klimawandel Vitis vinifera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calonnec, A., P. Cartolaro, J.M. Naulin, D. Bailey, M. Langlais, 2008: A host-pathogen simulation model: powdery mildew of grapevine. Plant Pathol. 57, 493–508.CrossRefGoogle Scholar
  2. Coakley, S.M., 1995: Biospheric change: will it matter in plant pathology? Can. J. Plant Pathol. 17, 147–153.CrossRefGoogle Scholar
  3. Coakley, S.M., H. Scherm, S. Chakraborty, 1999: Climate change and plant disease management. Ann. Rev. Phytopathol. 37, 399–426.CrossRefGoogle Scholar
  4. Chakraborty, S., 2005: Potential impact of climate change on plant-pathogen interactions. Aust. Plant Pathol. 34, 443–448.CrossRefGoogle Scholar
  5. Garrett, K.A., S.P. Dendy, E.E. Frank, M.N. Rouse, S.E. Travers, 2006: Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509.CrossRefPubMedGoogle Scholar
  6. Harvell, C.D., C.E. Mitchell, J.R. Ward, S. Altizer, A.P. Dobson, R.S. Ostfeld, M.D. Samuel, 2002: Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162.CrossRefPubMedGoogle Scholar
  7. Jenkyn, J.F., A. Bainbridge, 1978: Biology and pathology of cereal powdery mildews. In: D.M. Spencer (ed.): The Powdery Mildews, pp. 283–321. Academic Press, London, UK.Google Scholar
  8. Jones, G.V., M.A. White, O.R. Cooper, K. Storchmann, 2005: Climate change and global wine quality. Climatic Change 73, 319–343.CrossRefGoogle Scholar
  9. Le Treut, H., R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson, M. Prather, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller, 2007: Historical Overview of Climate Change. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, NY, USA, 93–127.Google Scholar
  10. Liu, J., P. Titone, M. Pugliese, A. Garibaldi, M.L. Gullino, 2008: Effects of elevated CO2 and temperature on infection of zucchini by powdery mildew. J. Plant Pathol., 90 (2), 106.Google Scholar
  11. Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver, Z.-C. Zhao, 2007: Global Climate Projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, NY, USA, 747–846.Google Scholar
  12. Mitchell, C.E., P.B. Reich, D. Tilman, J.V. Groth, 2003: Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Global Change Biol. 9, 438–451.CrossRefGoogle Scholar
  13. Morison, J.I.L., D.W. Lawlor, 1999: Interactions between increasing CO2 concentration and temperature on plants growth. Plant Cell Environ. 22, 659–682.CrossRefGoogle Scholar
  14. Myneni, R.B., C.D. Keeling, C.J. Tucker, G. Asrar, R.R. Nemani, 1997: Increased plant growth in the northern high latitudes from 1981 to 1996. Nature 386, 698–702.CrossRefGoogle Scholar
  15. Rosenzweig, C., M.L. Parry, 1994: Potential impact of climate change on world food supply. Nature 367, 133–138.CrossRefGoogle Scholar
  16. Runion, G.B., 2003: Climate change and plant pathosystems — future disease prevention starts here. New Phytol. 159, 531–538.CrossRefGoogle Scholar
  17. Salinari, F., S. Giosuè, F.N. Tubiello, A. Rettori, V. Rossi, V. Spanna, 2006: Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Global Change Biol. 12, 1299–1307.CrossRefGoogle Scholar
  18. Salinari, F., S. Giosuè, V. Rossi, F.N. Tubiello, C. Rosenzweig, M.L. Gullino, 2007: Downy mildew outbreaks on grapevine under climate change: elaboration and application of an empirical-statistical model. EPPO B. 37, 317–326.CrossRefGoogle Scholar
  19. Schmidhuber, J., F. Tubiello, 2007: Global food security under climate change. Proc. Natl. Acad. Sci. USA 104, 19703–19708.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Smith, T.M., T.R. Karl, R.W. Reynolds, 2002: How accurate are climate simulations? Science 296, 483–484.CrossRefPubMedGoogle Scholar
  21. Thompson, G.B., B.G. Drake, 1994: Insects and fungi on a C3 sedge and a C4 grass exposed to elevated atmospheric CO2 concentrations in open-top chambers in the field. Plant Cell Environ. 17, 1161–1167.CrossRefGoogle Scholar
  22. Von Tiedemann, A., K.H. Firsching, 2000: Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat. Environ. Pollut. 108, 357–363.CrossRefGoogle Scholar
  23. Wand, S.J.E., G.F. Midglet, M.H. Jones, 1999: Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biol. 5, 723–741.CrossRefGoogle Scholar
  24. White, M.A., N.S. Diffenbaugh, G.V. Jones, J.S. Pal, F. Giorgi, 2006: Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA 103, 11217–11222.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2010

Authors and Affiliations

  1. 1.Centre of Competence for the Innovation in the agro-environmental sector (AGROINNOVA)University of TorinoGrugliascoItaly
  2. 2.Di.Va.P.R.A. — Plant PathologyUniversity of TorinoGrugliascoItaly

Personalised recommendations