Advertisement

Journal of Plant Diseases and Protection

, Volume 116, Issue 4, pp 182–188 | Cite as

Vermicompost suppresses Rhizoctonia solani Kühn in cucumber seedlings

  • Y. Simsek Ersahin
  • K. Haktanir
  • Y. Yanar
Article

Abstract

Disease suppressiveness of vermicompost produced from agricultural wastes consisting of cattle manure, tree bark (Salix spp.), potato culls, and apples was assayed on damping-off of two days-old cucumber (Cucumis sativus cv. Cevher) seedlings infected by Rhizoctonia solani Kühn (AG-4). Suppression effect was assessed at the rates of 0, 10, 20 and 30% (v/v) vermicompost, either blended with Trichoderma harzianum Rifai (KRL-AG2), amended with potting mixtures consisting of sand and garden soil (1:1, v/v). Effect of water extracts of vermicompost on growth of R. solani mycelium in Petri dishes was also analyzed. Disease suppression effect increased in proportion to the pot amendment rate of vermicompost. Vermicomposts not blended with T. h arz ian u m effectively controlled damping-off of cucumber by R. solani (AG-4) at the rate of 20% and 30%. Vermicompost not blended with T. harzianum improved plant growth as well as that blended with T. harzianum. Analysis of the effect of water extracts of vermicompost on growth of R. solani mycelium in Petri dishes revealed antagonistic activity of a putative bacterium. Heat sterilization eliminated the suppressive and antagonistic effect by vermicompost and its water extracts, respectively. Activity of an antagonistic bacterium, which expressed a strong inhibition of growth of the pathogen mycelium, indicated that the type of suppressiveness against Rhizoctonia disease by the vermicompost is specific.

Key words

biological control damping-off seedling rot soil-borne pathogens Trichoderma harzianum vermicomposting 

Wurmkompost unterdrückt die Entwicklung von Rhizoctonia solani Kühn an Gurkenkeimlingen

Zusammenfassung

Die suppressive Wirkung von Wurmkompost aus Rinderdung, Baumrinde (Salix spp.) und nicht mehr verkaufsfähigen Kartoffeln und Äpfeln wurde gegenüber der durch Rhizoctonia solani Kühn (AG-4) verursachten Umfallkrankheit an infizierten, zwei Tage alten Gurkenkeimlingen (Cucumis sativus cv. Cevher) untersucht. Zu diesem Zweck wurde eine 1:1-Mischung von Sand und Gartenerde in Töpfen mit 0, 10, 20 oder 30% Wurmkompost gemischt und mit oder ohne Zugabe des Antagonisten Trichoderma harzianum Rifai (KRL-AG2) zur Anzucht der Keimlinge verwendet. Darüber hinaus wurde die Wirkung wässriger Kompostextrakte auf das Myzelwachstum von R. solani in Petrischalen untersucht. Die suppressive Wirkung des Komposts stieg mit zunehmendem Substratanteil. Kompost ohne Zugabe von T. harzianum besaß eine Wirkungseffizienz gegenüber der Umfallkrankheit an Gurkenkeimlingen von 20 bis 30%. Er förderte das Pflanzenwachstum genauso wie Kompost mit Zugabe von T. harzianum. Die wässrigen Kompostextrakte zeigten eine möglicherweise bakteriell bedingte antagonistische Wirkung auf das Myzelwachstum von R. solani. Eine Hitzesterilisation hob die suppressive und antagonistische Wirkung des Komposts bzw. seines wässrigen Extrakts vollständig auf. Eine deutliche antagonistische Wirkung eines Bakteriums auf das Myzelwachstum von R. solani bedeutete, dass die suppressive Wirkung des Komposts auf den Erreger spezifisch wäre.

Stichwörter

biologische Bekämpfung bodenbürtige Pathogene Keimlingsfäule Trichoderma harzianum Umfallkrankheit Wurmkompost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-Allah, A.M., R.A. Jones, A.F. Abou-Hadid, A.R. Smith, 1992: Salinity stress alters the vegetative and reproductive growth of cucumber plants. Acta Hortic. 23, 411–421.Google Scholar
  2. Agrios, G.N., 1988: Plant Pathology, 3rd edition. Academic, San Diego, CA, USA.Google Scholar
  3. Arnon, D.I., 1949: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Atiyeh, R.M., S. Subler, C.A. Edwards, G. Bachman, J.D. Metzger, W. Shuster, 2000: Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia 44, 579–590.CrossRefGoogle Scholar
  5. Boehm, M.J., H.A.J. Hoitink, 1992: Sustenance of microbial activity in potting mixes and its impact on severity of Pythium root rot of poinsettia. Phytopathology 82, 259–264.CrossRefGoogle Scholar
  6. Boehm, M.J., L.V. Madden, H.A.J. Hoitink, 1993: Effect of organic matter decomposition level on bacterial species diversity and composition in relationship to Pythium damping-off severity. Appl. Environ. Microbiol. 59, 4171–4179.PubMedPubMedCentralGoogle Scholar
  7. Bradley, C.A., G.L. Hartman, R.L. Nelson, D.S. Muller, W.L. Pederson, 2001: Response of ancestral soybean lines and commercial cultivars to Rhizoctonia root and hypocotyls rot. Plant Dis. 85, 1091–1095.CrossRefGoogle Scholar
  8. Cardoso, J.E., E. Echandi, 1987: Biological control of Rhizoctonia root rot of snap bean with bionucleate Rhizoctonia- like fungi. Plant Dis. 71, 167–170.CrossRefGoogle Scholar
  9. Chef, D.G., H.A.J. Hoitink, L.V. Madden, 1983: Effects of organic components in container media on suppression of Fusarium wilt of chrysanthemum and flax. Phytopathology 73, 279–281.CrossRefGoogle Scholar
  10. Chaoiu, H., C.A. Edwards, A. Brickner, S.S. Lee, N.Q. Arancon, 2002: Suppression of the plant diseases, Pythium (damping off), Rhizoctonia (root rot) and Verticillum (wilt) by vermicomposts. Proceedings, Crop Protection Conference, Brighton, UK, 18–21 November 2002, 711–716.Google Scholar
  11. Chartzoulakis, K.S., 1994: Photosynthesis, water relations and leaf growth of cucumber exposed to salt stress. Sci. Hortic. 59, 27–35.CrossRefGoogle Scholar
  12. De Ceuster, T.J.J., A.J. Hoitink, 1999: Using Compost to Control Plant Diseases. Biocycle 40 (6), 61–64.Google Scholar
  13. Dominguez, J., C.A. Edwards, 1997: A comparison of vermicomposting and Composting. Biocycle 38 (4), 57–60.Google Scholar
  14. Edwards, C.A., P.J. Bohlen, 1996: Biology and Ecology of Earthworms, 3rd edition. Chapman and Hall, London.Google Scholar
  15. Edwards, C.A., N.Q. Arancon, 2004: Vermicomposts suppress plant pest and disease attacks. Biocycle 45 (3), 51–55.Google Scholar
  16. Erhart, K., W. Burian Hartl, K. Stich, 1999: Suppression of Pythium ultimum by biowaste composts in relation to compost microbial biomass, activity and content of phenolic compounds. J. Phytopathol. 147, 299–305.CrossRefGoogle Scholar
  17. Folagatti, M.V., F. F. Blanco, 2000: Vegetative development of grafted cucumber plants irrigated with saline water. Sci. Agric. 57, 451–457.CrossRefGoogle Scholar
  18. Grattan, S.R., C.M. Grieve, 1999: Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 78, 127–157.CrossRefGoogle Scholar
  19. Hoitink, H.A.J., A.F. Schmitthenner, L.J. Herr, 1975: Composted bark for control of root rot in ornamentals. Ohio Rep. 60, 25–26.Google Scholar
  20. Hoitink, H.A.J., A.G. Stone, D.Y. Han, 1997: Suppression of plant diseases by composts. Hortscience 32, 184–187.Google Scholar
  21. Hoitink, H.A.J., M.J. Boehm, 1999: Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annu. Rev. Phytopathol. 37, 427–446.CrossRefPubMedGoogle Scholar
  22. Kacar, B., 2003: Toprak analizleri, 4th edition. A.U.Z.F..Egitim Arastirma ve Gelistirme Vakfi Yayinlari (No. 3), Ankara, Turkey.Google Scholar
  23. Kale, R.D., B.C. Mallesh, D.J. Bagyaray, 1992: Influence of vermicompost application on the available macronutrients and selected microbial populations in paddy field. Soil Biol. Biochem. 24, 1317–1320.CrossRefGoogle Scholar
  24. Kanangara, T., R.S. Utkhede, J.W. Paul, Z.K. Punja, 2000: Effects of mesophilic and thermophilic composts on suppression of Fusarium root and stem rot of greenhouse cucumber. Can. J. Microbiol. 46, 1021–1029.CrossRefGoogle Scholar
  25. Krause, M.S., L.V. Madden, H.A.J. Hoitink, 2001: Effect of potting mix microbial carrying capacity on biological control of Rhizoctonia damping-off of radish and Rhizoctonia crown and root rot of poinsettia. Phytopathology 91, 1116–1123.CrossRefPubMedGoogle Scholar
  26. Kaya, C., D. Higgs, F. Ince, B. Murillo-Amador, A. Cakir, E. Sakar, 2003: Ameliorative effects of potassium phosphate on salt stressed pepper and cucumber. J. Plant Nutr. 26, 807–820.CrossRefGoogle Scholar
  27. Kwok, O.C.H., P.C. Fahy, H.A.J. Hoitink, G.A. Kuter, 1987: Interactions between bacteria and Trichoderma hamatum in suppression of Rhizoctonia damping-off bark compost media. Phytopathology 77, 1206–1212.CrossRefGoogle Scholar
  28. Larsen, K.L., D.M. Cartney, 2000: The effect of C:N ratio on microbial activity and N retention: Bench scale study using pulp and paper biosolids. Compost Utiliz. 8, 147–150.CrossRefGoogle Scholar
  29. Noble, R., E. Coventry, 2005: Suppression of soil-borne plant diseases with composts: A Review. Biocontrol Sci. Technol. 15, 3–20.CrossRefGoogle Scholar
  30. Parida, A. K., A.B. Das, 2005: Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Safe. 60, 324–349.CrossRefGoogle Scholar
  31. Paulitz, T.C., R.R. Belanger, 2001: Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39, 103–133.CrossRefPubMedGoogle Scholar
  32. Rynk, R., 1992: Sample calculation. In: R. RYNK (ed.): On-Farm Composting Handbook. Natural Resource, Agriculture and Engineering Service Cooperative Extention (NRAES-54). Riley-Robb Hall, Ithaca, NY, USA.Google Scholar
  33. Scheurell, S., W. Mahaffee, 2002: Compost tea: Principles and prospects for plant disease control. Compost Sci. Utiliz. 10, 313–338.CrossRefGoogle Scholar
  34. Sneh, B., M. Ichielevich-Auster, 1998: Induced resistance of cucumber seedlings caused by some non-pathogenic Rhizoctonia (np-R) isolates. Phytoparasitica 26, 27–38CrossRefGoogle Scholar
  35. Szczech, M., W. Rondomanski, M.W. Brzeski, U. Smolinska, J.F. Kotowski, 1993: Suppressive effect of a commercial earthworm compost on some root infecting pathogens of cabbage and tomato. Biol. Agric. Hortic. 10, 47–52.CrossRefGoogle Scholar
  36. Szczech, M., 1999: Suppressiveness of vermicompost against Fusarium Wilt of tomato. J. Phytopathol. 147, 155–160.CrossRefGoogle Scholar
  37. Szczech, M., U. Smolinska, 2001: Comparison of suppressiveness of vermicomposts produced from animal manures and sewage sludge against Phytophthora Breda de Haan var. nicotianae. Phytopathol. Z. 149, 77–82.CrossRefGoogle Scholar
  38. Wang, Y., N. Nil, 2000: Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J. Hortic. Sci. Biotechnol. 75, 623–627.CrossRefGoogle Scholar
  39. Zaller, J.G., 2006: Foliar Spraying of Vermicompost Extracts: Effects on fruit quality and indications of late-blight suppression of field-grown tomatoes. Biol. Agric. Hortic. 24, 165–180.CrossRefGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2009

Authors and Affiliations

  1. 1.Department of Plant ProtectionUniversity of OrduOrduTurkey

Personalised recommendations