Skip to main content
Log in

Characterization of plant growth promoting bacteria from crops in Bolivia

Charakterisierung pflanzenwachstumsfördernder Bakterien von Kulturpflanzen in Bolivien

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The use of plant growth promoting bacteria (PGPB) is an economically and environmental friendly alternative to the application of chemical fertilizers resp. pesticides in agriculture. To obtain novel bacterial strains that could be used for plant growth promotion (PGP) in the agriculture of Bolivia, plant associated bacteria derived from horseradish tree (Moringa oleifera), sorghum (Sorghum vulgare), sunflower (Helianthus annuus), and safflower (Carthamus tinctorius) were screened for direct and indirect in vitro PGP traits. Subsequently, most promising strains were selected for ad planta studies. According to in vitro experiments, out of 59 tested isolates, 19% were declared as diazotrophs, 41% as solubilizers of phosphorus, 10% were able to reduce the ethylene precursor 1-aminocy-clopropane-1-carboxylic acid (ACC), and 17% exhibited phytohormone (IAA) synthesis. Only a small proportion of rhizo-bacterial strains (7% out of 276) showed in vitro antagonism against plant pathogenic Colletotrichum sp., whereas none of isolated stem and leaf endophytes inhibited growth of Verticillium chlamydosporum or Bipolaris maydis in dual culture. Based on results of in vitro screens, the rhizospheric strains Pectobacterium cypripedii M56, Pantoea agglomerans M72, and P. agglomerans M81 were selected for ad planta applications. Results revealed significant increases in number of beans per black bean plant resp. diameters of flower heads of sunflower plants compared to controls by P. agglomerans M72. We conclude that the assessment and selection of plant associated bacteria based on traits conferring theoretically PGP can provide the basis for the development of new microbial inoculants for agricultural purposes.

Zusammenfassung

Die Anwendung pflanzenwachstumsfördernder Bakterien in der Landwirtschaft kann eine profitable und umweltschonende Alternative zum Einsatz von chemischen Düngemitteln und Pestiziden darstellen. Um neue, bakterielle Pflanzenwachstumsförderer für die bolivianische Landwirtschaft zu gewinnen, wurden pflanzenassoziierte Bakterien von Meerrettichbaum (Moringa oleifera), Sorghumhirse (Sorghum vulgare), Sonnenblume (Helianthus annuus) und Färberdistel (Carthamus tinctorius) isoliert und in vitro auf direkte und indirekte Mechanismen der Pflanzenwachstumsförderung untersucht. Ausgehend von 59 unter Laborbedingungen getesteten Isolaten, waren 19% diazotroph, 41% wurden als Phosphor-Solubilisierer deklariert, 17% zeigten Phytohormonsynthese (IAA) und 10% wurden als Verwerter der Ethy- len-Vorläufer-Substanz 1-Aminocyclopropan-1-Carbonsäure (ACC) erklärt. Nur ein geringer Anteil rhizobakterieller Stämme (7% von 276) zeigte antagonistische Aktivität in vitro gegen das Pflanzenpathogen Colletotrichum sp., während keiner der von Stängeln oder Blättern isolierten Endophyten das Wach stum von Verticillium chlamydosporum oder Bipolaris maydis in Dualkultur inhibieren konnte. Basierend auf den Resultaten der in vitro Tests, wurden die Rhizosphären-Stämme Pectobacterium cypripedii M56, Pantoea agglomerans M72 und P. agglomerans M81 für die Applikation in Freilandexperimenten selektiert, wobei P. agglomerans M72 zu signifikant höheren Bohnenzahlen bei schwarzer Bohne bzw. Blütenkorbdurchmessern bei Sonnenblume im Vergleich zu Kontroll-Behandlungen geführt hat. Die Bewertung und Selektion pflanzenassoziierter Bakterien, basierend auf deren pflanzenwachstumsfördernden Eigenschaften in vitro, stellt die Grundlage für die Entwicklung neuer biologischer Produkte für landwirtschaftliche Zwecke dar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., T.L. Madden, A.A. Schaffer, J.H. Zhang, Z. Zhang, W. Miller, D.J. Lipman, 1997: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan, Y., G. Holguin, 1998: Proposal for the division of plant growth-promoting rhizobacteria into two classifications: Biocontrol-PGPB (plant growth-promoting bacteria) and PBPB. Soil. Biol. Biochem. 30, 1225–1228.

    Article  CAS  Google Scholar 

  • Berg, G., A. Krechel, M. Ditz, R.A. Sikora, A. Ulrich, J. Hall-Mann, 2005: Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51, 215–229.

    Article  CAS  PubMed  Google Scholar 

  • Berg, G., J. Hallmann, 2006: Control of plant pathogenic fungi with bacterial endophytes. In: B. SCHULZ, C. BOYLE, T. SIEBER (eds.): Microbial Root Endophytes, pp. 53–70. Springer, Berlin, Heidelberg, New York.

    Chapter  Google Scholar 

  • Berg, G., K. Opelt, C. Zachow, J. Lottmann, M. Götz, R. Costa, K. Smalla, 2006: The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol. Ecol. 56, 250–261.

    Article  CAS  PubMed  Google Scholar 

  • Berg, G., H. Müller, C. Zachow, K. Opelt, K. Scherwinski, R. Tilcher, A. Ullrich, J. Hallmann, R. Grosch, A. Sessitsch, 2008: Endophytes: structural and functional diversity and biotechnological applications in control of plant pathogens. Ecol. Gen. 6, 17–26.

    CAS  Google Scholar 

  • Bloemberg, G.V., B.J.J. Lugtenberg, 2001: Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4, 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Bonaterra, A., L. Ruz, E. Badosa, J. Pinochet, E. Montesinos, 2003: Growth promotion of Prunus rootstocks by root treatment with specific bacterial strains. Plant Soil 255, 555–569.

    Article  CAS  Google Scholar 

  • Brown, C.M., M.J. Dilworth, 1975: Ammonia assimilation by Rhizobium cultures and bacteroids. J. Gen. Microbiol. 86, 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Cattelan, A.J., P.G. Hartel, J.J. Fuhrmann, 1999: Screening for plant growth-promoting rhizobacteria to promote soybean growth. Soil Sci. Soc. Am. J. 63, 1670–1680.

    Article  CAS  Google Scholar 

  • Chernin, L., I. Chet, 2002: Microbial enzymes in the biocontrol of plant pathogens and pests. In: R.G. BURNS, R.P. DICK (eds.): Enzymes in the Environment — Activity, Ecology and Applications, pp. 171–226. Marcel Dekker, New York.

    Google Scholar 

  • Compant, S., B. Duffy, J. Nowak, C. Clément, E.A. Barka, 2005: Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951–4959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dart, P.J., 1986: Nitrogen fixation associated with non-legumes in agriculture. Plant Soil 90, 303–334.

    Article  CAS  Google Scholar 

  • Dobbelare, S., J. Vanderleydern, Y. Okon, 2003: Plant-growth promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22, 107–149.

    Article  Google Scholar 

  • El-Shanshoury, A.R., 1989: Growth promotion of wheat seedlings by Streptomyces atroolivaceus. J. Agron. Crop Sci. 163, 109–114.

    Article  Google Scholar 

  • Fahey, J.W., A.T. Zalcmann, P. Talalay, 2001: The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5–51.

    Article  CAS  PubMed  Google Scholar 

  • Faure, D., D. Vereecke, J.H.J. Leveau, 2008: Molecular communication in the rhizosphere. Plant Soil, DOI 10.1007/s11104-008-9839-2.

    Google Scholar 

  • Glick, B.R. 2005: Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett. 252, 1–7.

    Article  Google Scholar 

  • Gull, M., F.Y. Hafeez, M. Saleem, K.A. Malik, 2004: Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilising bacteria and a mixed rhizobial culture. Austral. J. Exp. Agric. 44, 623–628.

    Article  CAS  Google Scholar 

  • Hartmann, A., D. van Tuinen, G. Berg, 2009: Plant-driven selection of microbes. In: P. LEMANCEAU (ed.), Rhizosphere, a Major Place of Interactions. Springer, Berlin, Heidelberg, New York, in press.

    Google Scholar 

  • Kadam, S.S., K.G. Kachhave, J.K. Chavan, D.K. Salunkhe, 1977: Effect of nitrogen, Rhizobium inoculation and simazine on yield and quality of Bengal gram (Cicer arietinum L.). Plant Soil 47, 279–281.

    Article  CAS  Google Scholar 

  • Kjaer, A., O. Malver, B. El-Menshawi, J. Reisch, 1979: Isothiocyanates in myrosinase-treated seed extracts of Moringa peregrina. Phytochemistry 18, 1485–1487.

    Article  CAS  Google Scholar 

  • Krebs, B., B. Höding, S. Kübart, M.A. Workie, H. Junge, G. Schmiedeknecht, R. Grosch, H. Bochow, M. Hevesi, 1998: Use of Bacillus subtilis as biocontrol agent. I. Activities and characterization of Bacillus subtilis strains. J. Plant Dis. Protect. 105, 181–197.

    Google Scholar 

  • Kurze, S., H. Bahl, R. Dahl, G. Berg, 2001: Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis. 85, 529–534.

    Article  Google Scholar 

  • O’Sullivan, D.J., F. O’Gara, 1992: Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56, 662–676.

    PubMed  PubMed Central  Google Scholar 

  • Raaijmakers, J.M., T.C. Paulitz, C. Steinberg, C. Alabouvette, Y. Moenne-Loccoz, 2008: The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil, DOI 10.1007/s11104-008-9568-6.

    Google Scholar 

  • Reddy, M.S., R.K. Hynes, G. Lazarovits, 1994: Relationship between in vitro growth inhibition of pathogens and suppression of preemergence damping-off and postemergence root rot of white bean seedlings in the greenhouse by bacteria. Can. J. Microbiol. 40, 113–119.

    Article  Google Scholar 

  • Rumberger, A., P. Marschner, 2003: 2-Phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. Soil. Biol. Biochem. 35, 445–452.

    Article  CAS  Google Scholar 

  • Sergeeva, E., L. Danielle, M. Hirkala, L.M. Nelson, 2007: Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil 297, 1–13.

    Article  CAS  Google Scholar 

  • Sessitsch, A., T. Coenye, A.V. Sturz, P. Vandamme, E.A. Barka, J.F. Salles, J.D. Van Elsas, D. Faure, B. Reiter, B.R. Glick, G. Wang-Pruski, J. Nowak, 2005: Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int. J. Syst. Evol. Microbiol. 55, 1187–1192.

    Article  CAS  PubMed  Google Scholar 

  • Van Loon, L.C., 2007: Plant responses to plant growth promoting bacteria. Eur. J. Plant Pathol. 119, 243–254.

    Article  Google Scholar 

  • Weller, D.M., R.J. Cook, 1983: Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73, 463–469.

    Article  Google Scholar 

  • Whipps, J.M., 2001: Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Berg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fürnkranz, M., Müller, H. & Berg, G. Characterization of plant growth promoting bacteria from crops in Bolivia. J Plant Dis Prot 116, 149–155 (2009). https://doi.org/10.1007/BF03356303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356303

Key words

Stichwörter

Navigation