Skip to main content
Log in

Enhanced control of bacterial wilt of tomato by DL-3-aminobutyric acid and the fluorescent Pseudomonas isolate CW2

Effizientere Kontrolle der Bakterienwelke der Tomate durch DL-3-Aminobuttersäure und das fluoreszierende Pseudomonas-Isolat CW2

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Soil treatments with DL-3-aminobutyric acid (BABA) and the fluorescent Pseudomonas isolate CW2 significantly reduced bacterial wilt on tomato plants caused by Clavibacter michiganensis subsp. michiganensis (Cmm). Applications with 50 ml per pot of BABA (0.5 mg ml−1) applied 4 days before inoculation (dbi) or 50 ml per pot of CW2 (2 × 108 cfu ml−1) applied 2 dbi, reduced leaf wilting index (LWI) by 51.2 and 41.6% and vascular browning index (VBI) by 63.7 and 48.8%, respectively. Combined treatments, BABA applied 4 dbi and CW2 2 dbi (BABA/CW2) or CW2 4 dbi and BABA 2 dbi (CW2/BABA), proved to be more effective in reducing disease symptoms than single treatments: Treatments with BABA/CW2 and CW2/BABA reduced LWI by 86.6 and 70.3% and VBI by 83.6 and 86.7%, respectively. When BABA and CW2 were applied simultaneously 2 dbi disease parameters of bacterial wilt were less effectively reduced compared to combined treatments in sequence (BABA/CW2 or CW2/BABA). CW2 and BABA/CW2 treatments significantly increased fresh and dry weights of roots and shoots of tomato plants compared to the infected control. Roots of tomato plants treated with BABA alone or combined with CW2 (BABA/CW2 and CW2/BABA) revealed the highest total and free salicylic acid (SA) contents. The treatment with BABA and CW2 applied in sequence 4 and 2 dbi, respectively, reduced most effectively bacterial wilt symptoms of tomato, resulted in the highest root and shoot weights and the highest SA contents. The combined application of an inducer of resistance (BABA) with a biological control agent (CW2) might be a promising strategy to improve both the level and reliability of biological control in controlling bacterial wilt in tomato.

Zusammenfassung

Bodenbehandlungen mit DL-3-Aminobuttersäure (BABA) und dem Pseudomonas-Isolat CW2 verminderten signifikant die durch Clavibacter michiganensis subsp. michiganensis (Cmm) an Tomatenpflanzen hervorgerufene Tomatenwelke. Behandlungen mit 50 ml pro Gefäß BABA (0,5 mg ml−1) appliziert 4 Tage vor Inokulation (dbi) oder mit CW2 (50 ml pro Gefäß; 2 × 108 cfu ml−1) appliziert 2 dbi verminderten den Blattwelke-Index (LWI) um 51,2 bzw. 41,6% und den Gefäßbräune-Index (VBI) um 63.7 bzw. 48,8%. Kombinierte Behandlungen mit BABA, appliziert 4 dbi und CW2 2 dbi (BABA/CW2) oder CW2 4 dbi und BABA 2 dbi (CW2/BABA), reduzierten die Krankheitssymptome stärker als Einzelbehandlungen. Behandlungen mit BABA/CW2 und CW2/BABA verminderten den LWI um 86.6 bzw. 70.3% und den VBI um 83.6 bzw. 86.7%. Bei gleichzeitiger Applikation von BABA und CW2 2 dbi wurden die Krankheitssymptome weniger wirksam vermindert im Vergleich zu kombinierten Behandlungen in Folge (BABA/CW2 oder CW2/BABA). CW2- und BABA-Behandlungen erhöhten signifikant die Frisch- und Trockengewichte der Wurzeln und Sprosse der Tomatenpflanzen im Vergleich zur infizierten Kontrolle. Die Wurzeln von Tomatenpflanzen behandelt allein mit BABA oder in Kombination mit CW2 (BABA/CW2 und CW2/BABA) wiesen die höchsten Gehalte an gesamt und freier Salicylsäure (SA) auf. Die Behandlungen mit BABA und CW2 appliziert in Folge 4 dbi bzw. 2 dbi verminderten den Befall der Bakterienwelke am stärksten und wiesen die höchsten Spross- und Wurzelgewichte sowie SA-Gehalte auf. Die kombinierte Behandlung eines Resistenzinduktors (z.B. BABA) mit einem Biokontrollagens (z.B. CW2) erscheint vielversprechend hinsichtlich der Steigerung der Bekämpfung der bakteriellen Tomatenwelke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Anith, K.N., M.T. Momol, J.W. Kloepper, J.J. Marois, S.M. Olson, J.B. Jones, 2004: Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis. 88, 669–673.

    Article  CAS  Google Scholar 

  • Baker, K.F., R.J. Cook, 1982: Examples of biological control. In: W.H. Freeman (ed.): Biological Control of Plant Pathogens, pp. 61–106. The American Phytopathological Society, St. Paul, MN, USA.

    Google Scholar 

  • Baysal, Ö., Y.Z. Gürsoy, H. Örnek, A. Duru, 2005: Induction of oxidants in tomato leaves treated with DL-ß-Aminobutyric acid (BABA) and infected with Clavibacter michiganensis ssp. michiganensis. Eur. J. Plant Pathol. 112, 361–369.

    Article  CAS  Google Scholar 

  • Buchenauer, H., 1998: Biological control of soil-borne diseases by rhizobacteria. J. Plant Dis. Protect. 105, 329–348.

    Google Scholar 

  • Bultreys, A., I. Gheysen, 2000: Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG 2352: Appli Environ. Microbiol. 66, 325–331, 2000.

    CAS  Google Scholar 

  • Chamsai, J., J. Siegrist, H. Buchenauer, 2004: Mode of action of the resistance-inducing 3-aminobutyric acid in tomato roots against Fusarium wilt. J. Plant Dis. Prot. 111, 273–291.

    CAS  Google Scholar 

  • Chang, R.J., S.M. Ries, J.K. Pataky, 1992: Reductions in yield of processing tomatoes and incidence of bacterial canker. Plant Dis. 76, 805–809.

    Article  Google Scholar 

  • Chen, Z.X., H. Silva, D.F. Klessig, 1993: Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262, 1883–1886.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, Y.R., 2002: ß-Amino-butryric acid-induced resistance against plant pathogens. Plant Dis. 86, 448–457.

    Article  CAS  Google Scholar 

  • Cohen, Y., 1994: Local and systemic control of Phytophthora infestans in tomato plants by DL-3-amino-n-butanoic acids. Phytopathology 84, 55–59.

    Article  CAS  Google Scholar 

  • Cohen, Y., M. Reuveni, A. Baider, 1999: Local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasomopara viticola in grapevines. Eur. J. Plant Pathol. 105, 351–361.

    Article  CAS  Google Scholar 

  • Cohen, Y., T. Niderman, E. Mösinger, R. Fluhr, 1994: ß-Aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol. 104, 59–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath, U., C.M.J. Pieterse, B. Mauch-Mani, 2002: Priming in plant-pathogen interactions. Trends Plant Sci. 7, 210–216.

    Article  CAS  PubMed  Google Scholar 

  • Défago, G., C. Keel, 1995: Pseudomonas as biocontrol agents of diseases caused by soil-borne pathogens. In: H.M.T. Hokkanen, J. M. Lynch (eds.): Benefits and Risks of Introducing Biocontrol Agents, pp. 137–148. Cambridge University Press, Cambridge, UK.

    Chapter  Google Scholar 

  • Durner, J., J. Shah, D.F. Klessig, 1997: Salicylic acid and disease resistance in plants. Trends Plant Sci. 2, 266–274.

    Article  Google Scholar 

  • Durrant, W.E., X. Dong, 2004: Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185–209.

    Article  CAS  PubMed  Google Scholar 

  • Fakhouri, W., F. Walker, B. Vogler, W. Armbruster, H. Buchenauer, 2001b: Isolation and identification of N-mercapto-4-formylcarbostyril, an antibiotic produced by Pseudomonas fluorescens. Phytochemistry 58, 1297–1303.

    Article  CAS  PubMed  Google Scholar 

  • Fakhouri, W., H. Buchenauer, 2002: Enhancement of population densities of fluorescent pseudomonads in the rhizosphere of tomato plants by addition of acibenzolar-S-methyl. Can. J. Microbiol. 48, 1069–1075.

    Article  CAS  PubMed  Google Scholar 

  • Fakhouri, W., H. Buchenauer, 2003: Characteristics of fluorescent pseudomonad isolates towards controlling of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. J. Plant Dis. Protect. 110, 143–156.

    CAS  Google Scholar 

  • Fakhouri, W., Z. Kang, H. Buchenauer, 2001a: Ultrastructural studies on the mode of action of fluorescent pseudomonads alone and in combination with acibenzolar-S-methyl effective against Fusarium oxysporum f. sp. lycopersici in tomato plants. J. Plant Dis. Protect. 108, 513–529.

    CAS  Google Scholar 

  • Fatmi, M., N.W. Schaad, 2002: Survival of Clavibacter michiganensis subsp. michiganensis in infected tomato stems under natural field conditions in California, Ohio and Morocco. Plant Pathol. 51, 149–154.

    Article  Google Scholar 

  • Fatmi, M., N.W. Schaad, H.A. Bolkan, 1991: Seed treatment for eradicating Clavibacter michiganensis subsp. michiganensis from naturally infected tomato seeds. Plant Dis. 75, 383–385.

    Article  CAS  Google Scholar 

  • Gartemann, K.-H., O. Kirchner, J. Engemann, I. Grafen, R. Eichenlaub, A. Burger, 2003: Clavibacter michiganensis subsp. michiganensis: First steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J. Biotechnol. 106, 179–191.

    Article  CAS  PubMed  Google Scholar 

  • Gleason, M.L., E.J. Braun., W.M. Carlton, R.H. Peterson, 1991: Survival and dissemination of Clavibacter michiganensis subsp. michiganensis in tomatoes. Phytopathology 81, 1519–1523.

    Article  Google Scholar 

  • Haas, D., C. Keel, J. Laville, M. Maurhofer, T. Oberhäbsli, U. Schnider, C. Voisard, B. Wüthrich, G. Défago, 1991: Secondary metabolites of Pseudomonas fluorescens strain CHAO involved in the suppression of root diseases. In: H. Hennecke, H. D. P. S. Verma (eds.): Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 1, pp. 450–456. Kluwer, Dordrecht, The Netherlands.

    Article  Google Scholar 

  • Haas, D., G. Défago, 2005: Biological control of soil-borne pathogens by fluorescent pseudomonas. Nat. Rev. Microbiol. 3, 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, M.A.E., H. Buchenauer, 2007: Induction of resistance to fire blight in apple by acibenzolar-S-methyl and DL-3-aminobutyric acid. J. Plant Dis. Protect. 114, 151–158.

    CAS  Google Scholar 

  • Hausbeck, M.K., J. Bell, C. Medina-Mora, R. Podolsky, D.W. Fulbright, 2000: Effect of bactericides on population sizes and spread of Clavibacter michiganensis subsp. michiganensis on tomatoes in the greenhouse and on disease development and crop yield in the field. Phytopathology 90, 38–44.

    Article  CAS  PubMed  Google Scholar 

  • Howell, C.R., R.D. Stipanovic, 1980: Suppression of Pythium ultimum-induced dampig-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70, 712–715.

    Article  CAS  Google Scholar 

  • Jakab, G., V. Cottier, V. Toquin, G. Rigoli, L. Zimmerli, J.-P. Métraux, B. Mauch-Mani, 2001: ß-Aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 107, 29–37.

    Article  CAS  Google Scholar 

  • Jeun, Y.C., H. Buchenauer, 2001: Infection structures and localization of the pathogenesis-related protein AP24 in leaves of tomato plants exhibiting systemic acquired resistance against Phytophthora infestans after pre-treatment with 3-aminobutyric acid or tobacco necrosis virus. J. Phytopathol. 149, 141–153.

    Article  CAS  Google Scholar 

  • Jeun, Y.C., J. Siegrist, H. Buchenauer, 2000: Biochemical and cytological studies on mechanisms of systemically induced resistance to Phytophthora infestans in tomato plants. J. Phytopathol. 148, 129–140.

    CAS  Google Scholar 

  • King, E.O., M.K. Ward, D.E. Raney, 1954: Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44, 301–307.

    CAS  PubMed  Google Scholar 

  • Li, J., I. Zingen-Sell, H. Buchenauer, 1996: Induction of resistance of cotton plants to Verticillium and of tomato plants to Fusarium wilt by 3-aminobutyric acid and methyl jasmonate. J. Plant Dis. Protect. 103, 288–299.

    CAS  Google Scholar 

  • Loper, J.E., 1988: Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78, 166–172.

    Article  CAS  Google Scholar 

  • Lynch, J.M., J.M. Whipps, 1991: Substrate flow in the rhizosphere. In: D.L. Keister, P. B. Cregan (eds.): The Rhizosphere and Plant Growth, pp. 15–24. Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Malamy, J., D.F. Klessig, 1992: Salicylic acid and plant disease resistance. Plant J. 2, 643–654.

    Article  CAS  Google Scholar 

  • Mauch-Mani, B., J.-P. Métraux, 1998: Salicylic acid and systemic acquired resistance to pathogen attack. Ann. Bot. 82, 535–540.

    Article  CAS  Google Scholar 

  • Moulin, F., P. Lemanceau, C. Alabouvette, 1996: Suppression of Pythium root rot of cucumber by a fluorescent pseudomonad is related to reduced root colonization by Pythium aphanidermatum. J. Phytopathol. 144, 125–129.

    Article  Google Scholar 

  • Oka, Y., Y. Cohen, Y. Spiegel, 1999: Local and systemic induced resistance to the root-knot nematode in tomato by DL-ß-amino-n-butyric acid. Phytopathology 89, 1138–1143.

    Article  CAS  PubMed  Google Scholar 

  • Porat, R., V. Vinokur, B. Weiss, L. Cohen, A. Daus, E.E. Goldschmidt, S. Droby, 2003: Induction of resistance to Penicillium digitatum in grapefruit by ß-aminobutyric acid. Eur. J. Plant Pathol. 109, 901–907.

    Article  CAS  Google Scholar 

  • Poysa, V., 1993: Evaluation of tomato breeding lines resistant to bacterial canker. Can. J. Plant Pathol. 15, 301–304.

    Article  Google Scholar 

  • Ramamoorthy, V., T. Raguchander, R. Samiyappan, 2002: Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads. Eur. J. Plant Pathol. 108, 429–441.

    Article  CAS  Google Scholar 

  • Ramette, A., M. Frapolli, G. Défago, Y. Moënne-Loccoz, 2003: Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol. Plant-Microbe Interact. 16, 525–535.

    Article  CAS  PubMed  Google Scholar 

  • Sholberg, P.L., K.E. Bedford, P. Haag, P. Randall, 2001: Survey of Erwinia amylovora isolates from British Columbia for resistance to bactericides and virulence on apple. Can. J. Plant Pathol. 23, 60–67.

    Article  CAS  Google Scholar 

  • Siegrist, J., M. Orober, H. Buchenauer, 2000: ß-Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol. Mol. Plant Pathol. 56, 95–106.

    Article  CAS  Google Scholar 

  • Stevens, C., V.A. Khan, R. Rodriguez-Kabana, L.D. Ploper, P.A. Backman, D.J. Collins, J.E. Brown, M.A. Wilson, E.C.K. Igwegbe, 2003: Integration of soil solarization with chemical, biological and cultural control for the management of soilborne diseases of vegetables. Plant Soil 253, 493–506.

    Article  CAS  Google Scholar 

  • Ton, J., B. Mauch-Mani, 2004: ß-amino-butyric acid-induced resistance against necrotrophic pathogen is based on ABA-dependent priming for callose. Plant J. 38, 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Ton, J., G. Jakab, V. Toquin, V. Flors, A. Iavicoli, M.N. Maeder, J. Métraux, B. Mauch-Mani, 2005: Dissecting the ß-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17, 987–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt, W., H. Buchenauer, 1997: Enhancement of biological control by combination of antagonistic fluorescent Pseudomonas strains and resistance inducers against damping off and powdery mildew in cucumber. J. Plant Dis. Protect. 104, 272–280.

    Google Scholar 

  • Weller, D.M., 1988: Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26, 379–407.

    Article  Google Scholar 

  • Yan, Z., M.S. Reddy, C.-M. Ryu, J.A. McInroy, M. Wilson, J.W. Kloepper, 2002: Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92, 1329–1333.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli, L., G. Jakab, J.-P. Métraux, B. Mauch-Mani, 2000: Potentiation of pathogen-specific defense mechanisms in Arabidopsis by ß-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97, 12920–12925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Buchenauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.A.E., Buchenauer, H. Enhanced control of bacterial wilt of tomato by DL-3-aminobutyric acid and the fluorescent Pseudomonas isolate CW2. J Plant Dis Prot 115, 199–207 (2008). https://doi.org/10.1007/BF03356264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356264

Key words

Stichwörter

Navigation