Journal of Plant Diseases and Protection

, Volume 115, Issue 4, pp 162–166 | Cite as

Susceptibility of Greek alfalfa and clover cultivars to Fusarium oxysporum f. sp. medicaginis and potential methods of disease control



The fungus Fusarium oxysporum f. sp. medicaginis (Fom), as verified following Koch’s postulates, was isolated from diseased alfalfa plants, cv. Yliki, in Greece. The susceptibility of eight most cultivated in Greece alfalfa and two clover cultivars was tested using seedlings that were artificially inoculated according to the root-dipping method. All alfalfa cultivars were susceptible to Fom, while the fungus was non pathogenic to clover cultivars. The effectiveness of the biological agents 4F3 (nit mutant of non-pathogenic F. oxysporum isolate) and 618–12B17 (non-pathogenic benomyl resistant F. oxysporum mutant), the chemical substances ß-aminobutyric acid and Bion and fungicide carbendazim was evaluated regarding disease control. Disease incidence was suppressed in association with carbendazim, 4F3, 618–12B17 and Bion treatments.

Key words

control methods Fusarium wilt Medicago sativa Trifolium pratense 


Bekämpfungsverfahren Fusarium-Welke Medicago sativa Trifolium pratense 

Anfälligkeit griechischer Luzerne- und Kleesorten gegenüber Fusarium oxysporum f. sp. medicaginis und potenzielle Bekämpfungsverfahren


Der anhand von Koch’s Postulaten identifizierte Pilz Fusarium oxysporum f. sp. medicaginis (Fom) wurde aus infizierten Luzernepflanzen der Sorte Yliki in Griechenland isoliert. Die Anfälligkeit der acht verbreitetsten Luzernesorten Griechenlands und zweier Kleesorten gegenüber dem Pilz wurde mit der Wurzeltauchmethode untersucht. Während alle Luzernesorten anfällig gegenüber Fom waren, war der Pilz gegenüber den beiden Kleesorten nicht pathogen. Die Effizienz der Antagonisten 4F3 (nit-Mutante eines nicht-pathogenen F.-oxyspo- rum-Isolats) und 618-12B17 (nicht-pathogene Benomyl-resis- tente F.-oxysporum-Mutante), der chemischen Substanzen ß-Aminobuttersäure und Bion sowie des Fungizids Carbenda- zim wurde hinsichtlich einer Kontrolle der Erkrankung untersucht. Die Befallshäufigkeit sank gegenüber der Kontrolle nach Behandlungen mit 4F3, 618–12B17 und Bion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alabouvette, C., Y. Couteaudier, 1992: Biological control of Fusarium wilt with nonpathogenic Fusaria. In: E.C. Tjamos, G. C. Papavizas, R.J. Cook (eds.): Biological Control of Plant Diseases, pp. 415–426. Plenum Press, New York, USA.CrossRefGoogle Scholar
  2. Anfoka, F.H., 2000: Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum Mill. cv. Vollendung) to Cucumber Mosaic Virus. Crop Prot. 19, 401–405.CrossRefGoogle Scholar
  3. Antonopoulos, D.F., K. Elena, E.C. Tjamos, 2003: First report of Fusarium wilt of alfalfa in Greece. Plant Dis. 87, 751.CrossRefGoogle Scholar
  4. Armstrong, G.M., J.K. Armstrong, 1954: Alfalfa-A common host for the wilt Fusaria from alfalfa, cotton and cassia. Plant Dis. Rep. 38, 221–222.Google Scholar
  5. Armstrong, G.M., J.K. Armstrong, 1965: Further studies on the pathogenicity of three forms of Fusarium oxysporum causing wilt of alfalfa. Plant Dis. Rep. 49, 412–416.Google Scholar
  6. Bao, J.R., G. Lazarovits, 2001: Differential colonization of tomato roots by nonpathogenic and pathogenic Fusarium oxysporum strains may influence Fusarium wilt control. Phytopathology 91, 449–456.CrossRefPubMedGoogle Scholar
  7. Benhamou, N., R.R. Belanger, 1998: Benzothiadazole-mediat- ed induced resistance to Fusarium oxysporum f. sp. radicis-ly- copersici in tomato. Plant Physiol. 118, 1203–1212.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Campbell, C.L., L.V. Madden, 1990: Introduction to Plant Disease Epidemiology. John Wiley & Sons Inc., New York.Google Scholar
  9. Cohen, Y., 1994: ß-aminobutyric acid induces systemic resistance against Peronospora tabacina. Physiol. Mol. Plant Pathol. 44, 273–288.CrossRefGoogle Scholar
  10. Cole, D.L., 1999: The efficacy of acibenzolar-S-methyl, an inducer of systemic acquired resistance, against bacterial and fungal diseases of tobacco. Crop Prot. 18, 267–273.CrossRefGoogle Scholar
  11. Corell, J.C., C.J.R. Klittich, J.F. Leslie, 1987: Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77, 1640–1644.CrossRefGoogle Scholar
  12. Davidse, L.C., 1986: Benzimidazole fungicides: mechanisms of action and biological impact. Annu. Rev. Phytopathol. 24, 43–65.CrossRefGoogle Scholar
  13. Elena, K., E.J. Paplomatas, C. Lampropoulos, 2001: Biological control of Fusarium oxysporum f. sp. dianthi using nonpathogenic strains of F. osysporum. Proceedings, Ninth Hellenic Phytopathological Conference, Athens Greece 20-22 October 1998: Phytopathol. Medit. 40, 93.Google Scholar
  14. Emberger, G., R.E. Welty, 1983: Evaluation of virulence of Fusarium oxysporum f. sp. medicaginis and Fusarium Wilt resistance in alfalfa. Plant Dis. 67, 94–98.CrossRefGoogle Scholar
  15. Erwin, D.C., 1990: Fusarium wilt. In: D. Studevill, D.C. Erwin (eds.): Compendium of alfalfa diseases, pp 33–34. Second edition. Phytopathological Society, St. Paul, MN, USA.Google Scholar
  16. Frosheiser, F.I., D.K. Barnes, 1978: Field reaction of artificially inoculated alfalfa populations to the Fusarium and Bacterial wilt pathogens alone and in combination. Phytopathology 68, 943–946.CrossRefGoogle Scholar
  17. Garibaldi, A., F. Brunatti, M.L. Gullino, 1987: Evaluation of several antagonists and different methods of application against Fusarium wilt of Carnation. EPPO Bull. 17, 625–629.CrossRefGoogle Scholar
  18. He, C.Y., T. Hsiang, D.J. Wolyn, 2002: Induction of systemic disease resistance and pathogen defense responses in Asparagus officinalis inoculated with nonpathogenic strains of Fusarium oxysporum. Plant Pathol. 51, 225–230.CrossRefGoogle Scholar
  19. JENKINS, J.H., G.D. LINDBERG, 1961: Fusarium wilt of alfalfa in Louisiana. Southern Division Report and Abstracts, 643.Google Scholar
  20. Kessmann, H., T. Stau, C. Hofman, T. Maetzke, J. Herttzog, E. Ward, S. Uknes, J. Ryals, 1994: Induction of systemic acquired disease resistance in plants by chemicals. Annu. Rev. Phytopathol. 32, 439–459.CrossRefPubMedGoogle Scholar
  21. Korolev, N., E. Pèrez-Artèz, J. Bejarano-Alcázar, D. Rodríguez-Jurado, J. Katan, T. Katan, R.M. Jimènez-Duípaz, 2001: Comparative study of genetic diversity and pathogenicity among populations of Verticillium dahliae from cotton in Spain and israel. Eur. J. Plant Pathol. 107, 443–456.CrossRefGoogle Scholar
  22. Larkin, R.P., D.R. Fravel, 1999: Field efficacy of selected non-pathogenic Fusarium spp. and other biocontrol agents for control of Fusarium wilt of tomato. Biol. Cult. Tests 14, 116.Google Scholar
  23. Larkin, R.P., D.R. Fravel, 2002: Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by non-pathogenic Fusarium spp. Phytopathology 92, 1160–1166.CrossRefPubMedGoogle Scholar
  24. Lawton, K.A., L. Friedrich, M. Hunt, K. Weymann, T. Delaney, H. Kessmann, T. Staub, J.A. Ryals, 1996: Benzothiadazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10, 71–82.CrossRefPubMedGoogle Scholar
  25. Leath, K.T., 1993: Interaction of Fusarium oxysporum f. sp. medicaginis with feeding activity of clover root curculio larvae in alfalfa. Plant Dis. 77, 799–802.CrossRefGoogle Scholar
  26. Mauch-Mani, B., J.-P. Métraux, 1998: Salicylic acid and systemic acquired resistance to pathogen attack. Ann. Bot. 82, 535–540.CrossRefGoogle Scholar
  27. Oostendorp, M., W. Kunz, B. Dietrich, T. Syaub, 2001: Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 107, 19–28.CrossRefGoogle Scholar
  28. Postma, J., H. Rattink, 1992: Biological control of Fusarium wilt of carnation with nonpathogenic isolate of Fusarium oxysporum. Can. J. Bot. 70, 1199–1205.CrossRefGoogle Scholar
  29. Puhalla, J.E., 1985: Classification of strains of Fusarium oxysporum on the basis of vegetative compatibility. Can. J. Bot. 63, 179–183.CrossRefGoogle Scholar
  30. Rouxe, F., D. Bouhot, 1971: Recherches sur l’ ecology des champignons parasites dans le sool. IV. Nouvelles mises au point concernant l’ analyse sélective et quantitative des Fusarium oxysporum et F. solani dans le sol. Ann. Phytopathol. 3, 171–188.Google Scholar
  31. Siegrist, J., M. Orober, H. Buchenauer, 2000: ß-aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol. Mol. Plant Pathol. 56, 95–106.CrossRefGoogle Scholar
  32. Sinha, A.K., R.K.S. Wood, 1968: Studies on the nature of resistance in tomato plants to Verticillium albo-atrum. Ann. Appl. Biol. 62, 319–327.CrossRefGoogle Scholar
  33. Snyder, W.C., H.N. Hansen, 1940: The species concept in Fusarium. Am. J. Bot. 27, 65–67.CrossRefGoogle Scholar
  34. Stephens, C.T., W.H. Elmer, 1988: Comparison of techniques for eliminating contaminants from asparagus seeds. HortScience 23, 1031–1032.Google Scholar
  35. Sticher, L., B. Mach-Mani, J.-P. Métraux, 1997: Systemic acquired resistance. Annu. Rev. Phytopathol. 35, 235–270.CrossRefPubMedGoogle Scholar
  36. Tamietti, G., R. Pramotton, 1987: Une méthode très simple de sélection de souches de Fusarium spp. non pathogenes, antagonistes des fusarioses vasculaires. EPPO Bull. 17, 549–557.CrossRefGoogle Scholar
  37. Weimer, J.L., 1928: A wilt disease of alfalfa caused by Fusarium oxysporum var. medicaginis. J. Agric. Res. 37, 419–433.Google Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2008

Authors and Affiliations

  1. 1.Laboratory of MycologyBenaki Phytopathological InstituteKifissiaGreece

Personalised recommendations