Skip to main content
Log in

Interrelationships between Rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the root-knot nematode Meloidogyne incognita on tomato

Interaktionen zwischen Rhizobium etli G12 und Glomus intraradices und multitrophische Effekte bei der biologischen Bekämpfung von Meloidogyne incognita an Tomaten

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The plant health promoting rhizobacterium Rhizobium etli G12 known to induce resistance toward root-knot nematodes was shown to increase mycorrhizal establishment when introduced in combination. R. etli promoted the establishment of Glomus intraradices on roots of different tomato cultivars. In vitro studies demonstrated that inoculation with bacteria leads to changes in fungal morphology, including increased hyphal diameter and branching as well as formation of new spores. R. etli seems to be responsible for accelerated arbuscular mycorrhizal (AMF) establishment in tomato roots in concomitant inoculation tests. Therefore R. etli is regarded to be a mycorrhiza helper bacterium. Combined inoculation of R. etli with G. intraradices in biocontrol of Meloidogyne incognita on tomato led to additive effects. Single inoculation of the microorganisms reduced galling by 24 to 39% while dual inoculation resulted in a 60% reduction. The present findings indicate that specific combinations of plant health promoting microorganisms with AMF could lead to improved mycorrhizal colonization and together act as powerful tools in the promotion of both plant growth and health.

Zusammenfassung

Das pflanzenstärkende Rhizosphärebakterium Rhizobium etli G12, welches eine Resistenz gegen Wurzelgallennematoden induzieren kann, hat, bei kombinierter Applizierung mit anderen Mikroorganismen, zu einer Erhöhung der Mykorrhizierung geführt. Entsprechend unterstützte R. etli die Besiedelung der Wurzeln verschiedener Tomatemsorten durch Glomus intraradices. In-vitro-Experimente zeigten, dass eine Inokulation mit dem genannten Bakterium zu einer morphologischen Veränderung des Pilzes geführt hat. So erhöhten sich sowohl der Hyphendurchmesser als auch die Zahl der Verzweigungen, zudem bildeten sich neue Sporen. Der Effekt von R. etli auf die arbuskulären Mykorrhizapilze (AMF) scheint für die beschleunigte Besiedlung von Tomaten mit Mykorrhiza in begleitenden Inokulationsversuchen verantwortlich zu sein, wodurch R. etli als unterstützendes Bakterium für die Mykorrhizierung angesehen werden kann. Eine kombinierte Inokulation von R. etli und G. intraradices hat zu einem additiven Effekt bei der biologischen Bekämpfung des Wurzelgallennematoden Meloidogyne incognita an Tomaten geführt. Einzelinokulation reduzierte die Gallenbildung um 24% bis 39%, wohingegen eine kombinierte Inokulation zu einer Reduktion von 60% geführt hat. Diese neuen Erkenntnisse zeigen, dass pflanzengesundheitsfördernde Mikroorganismen in Kombination mit AMF zu einer erhöhten Mykorrhizierung führen und somit zusammen eine wirkungsvolle Förderung von Pflanzenwachstum und Pflanzengesundheit erreichen können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Barea, J.M., G. Andrade, V. Bianciotto, D. Dowling, S. Lohrke, P. Bonfante, F. O’Gara, C. Azcón-Aguilar, 1998: Impact on arbuscular mycorrhizal formation of Pseudomonas strains used as inoculants for biocontrol of soilborne fungal plant pathogens. Appl. Environ. Microbiol. 64, 2304–2307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barea, J.M., P. Jeffries, 1995: Arbuscular mycorrhizas in sustainable soil-plant systems. In: B. Hock, A. Varma (eds.): Mycorrhiza Structure, Function, Molecular Biology and Biotechnology, pp. 521–559. Springer, Berlin.

    Google Scholar 

  • Bécard, G., J.A. Fortin, 1988: Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 108, 211–218.

    Article  Google Scholar 

  • Bianciotto, V., S. Andreotti, R. Balestrini, P. Bonfante, S. Perotto, 2001: Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur. J. Histochem. 45, 39–49.

    Article  CAS  PubMed  Google Scholar 

  • Buchenauer, H., 1998: Biological control of soil-borne diseases by rhizobacteria. Z. Pflanzenk. Pflanzen. 105, 329–348.

    Google Scholar 

  • Burla, M., M. Goverde, F.J. Schwinn, A. Wiemken, 1996: Influence of biocontrol organisms on root pathogenic fungi and on the plant symbiotic micro-organisms Rhizobium phaseoli and Glomus mosseae. Z. Pflanzenk. Pflanzen. 103, 156–163.

    Google Scholar 

  • Caron, M., J.A. Fortin, C. Richard, 1985: Influence of substrate on the interaction of Glomus intraradices and Fusarium oxysporum f.sp. radicis-lycopersici on tomatoes. Plant Soil 87, 233–239.

    Article  Google Scholar 

  • Diedhiou, P.M., J. Hallmann, E.-C. Oerke, H.-W. Dehne, 2003: Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13, 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Elsen, A., S. Declerck, D. De Waele, 2001: Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11, 49–51.

    Article  Google Scholar 

  • Filion, M., M. St-Arnaud, J.A. Fortin, 1999: Direct interaction between the arbuscular mycorrhizal fungus Glomus intrara-dices and different rhizosphere micro-organisms. New Phytol. 141, 525–533.

    Article  Google Scholar 

  • Garbaye, J., 1994: Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol. 128, 197–210.

    Article  Google Scholar 

  • Grandison, G.S., K.M. Cooper, 1986: Interactions of vesicular-arbuscular mycorrhizae and cultivars of alfalfa susceptible and resistant to Meloidogyne hapla. J. Nematol. 18, 141–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hallmann, J., A. Quadt-Hallmann, W.G. Miller, R.A. Sikora, S.E. Lindow, 2001: Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloid-ogyne incognita infection. Biol. Control 91, 415–422.

    CAS  Google Scholar 

  • Hasky-Günther, K., S. Hoffmann-Hergarten, R.A. Sikora, 1998: Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fundam. Appl. Nematol. 21, 511–517.

    Google Scholar 

  • Hildebrandt, U., K. Janetta, H. Bothe, 2002: Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl. Environ. Microbiol. 68, 1919–1924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussey, R.A., K.P. Barker, 1973: A comparison of methods for collecting inocula for Meloidogyne sp., including a new technique. Plant Dis. Report. 57, 1025–1028.

    Google Scholar 

  • Jones, J.P., R.E. Stall, T.A. Zitter, 1991: Compendium of Tomato Diseases. Aps Press.

    Google Scholar 

  • King, E.O., M. Warth, E.D. Raney, 1954: Two simple media for the demonstration of procyanin and fluorescein J. Lab. Clin. Med. 44, 301–307.

    CAS  PubMed  Google Scholar 

  • Linderman, R.G., 1988: Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect. Phytopathology 78, 366–371.

    Google Scholar 

  • Linderman, R.G., 1994: Role of VAM fungi in biocontrol. In: F.L. Pfleger, R.G. Linderman (eds.): Mycorrhizae and Plant Health, pp. 1–25. APS Press, St. Paul, MN.

    Google Scholar 

  • Mosse, B., 1962: The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J. Gen. Microbiol. 27, 509–520.

    Article  CAS  PubMed  Google Scholar 

  • Paulitz, T.C., R.G. Linderman, 1989: Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytol. 113, 37–45.

    Article  Google Scholar 

  • Powell, C.L.L., 1976: Development of mycorrhizal infections from Endogone spores and infected root segments. T. Brit. Mycol. Soc. 66, 439–445.

    Article  Google Scholar 

  • Racke, J., R.A. Sikora, 1992: Isolation, formulation and antagonistic activity of rhizobacteria toward the potato cyst nematode Globodera pallida. Soil Biol. Biochem. 24, 521–526.

    Article  Google Scholar 

  • Raupach, G.S., J.W. Kloepper, 1998: Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88, 1158–1164.

    Article  CAS  PubMed  Google Scholar 

  • Reimann, S., R.A. Sikora, 2003: Managing the mycorrhizosphere — an approach to sustainable agriculture after the phaseout of methyl bromide. Comm. Agric. Appl. Biol. Sci. 68, 129–134.

    CAS  Google Scholar 

  • Reitz, M., S. Hoffmann-Hergarten, J. Hallmann, R.A. Sikora, 2001: Induction of systemic resistance in potato by rhizobacterium Rhizobium etli strain G12 is not associated with accumulation of pathogenesis-related proteins and enhanced lignin biosynthesis. J. Plant Dis. Protect. — Z. Pflanzenk. Pflanzen. 108, 11–20.

    CAS  Google Scholar 

  • Reitz, M., K. Rudolph, I. Schröder, S. Hoffmann-Hergarten, J. Hallmann, R.A. Sikora, 2000: Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl. Environ. Microbiol. 66, 3515–3518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh, H.M., R.A. Sikora, 1984: Relationship between Glomus fasciculatum root colonisation of cotton and its effect on Meloidogyne incognita. Nematologica 30, 230–237.

    Article  Google Scholar 

  • Sikora, R.A., 1995: Vesicular-arbuscular mycorrhizae: their significance for biological control of plant parasitic nematodes. Biocontrol 1, 29–33.

    Google Scholar 

  • Sikora, R.A., E. Fernández, 2005: Nematode parasites of vegetables. In: M. Luc, R.A. Sikora, J. Bridge (eds.): Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. Cab International, Wallingford.

    Google Scholar 

  • Sikora, R.A., S. Hoffmann-Hergarten, 1993: Biological control of plant parasitic nematodes with plant-health-promoting rhizobacteria. In: R.D. Lumsden, J.L. Vaughn (eds.): Pest Management: Biologically Based Technologies. Proceedings of Beltsville Symposium XVIII. American Chemical Society, Washington, DC.

    Google Scholar 

  • Sikora, R.A., S. Reimann, 2004: Suppressive soils, the edge of chaos and multitrophic strategies for biocontrol of pests and diseases in soil ecosystems. IOBC WPRS Bull. 27, 251–258.

    Google Scholar 

  • Sikora, R.A., R.-P. Schuster, 2000: Handbuch der Phytonematologie. Shaker Verlag, Aachen.

    Google Scholar 

  • Smith, G.S., 1988: The Role of phosphorus nutrition in interactions of vesicular-arbuscular mycorrhizal fungi with soil-borne nematodes and fungi. Phytopathology 78, 371–374.

    CAS  Google Scholar 

  • Smith, G.S., R.S. Hussey, R.W. Roncadori, 1986: Penetration and postinfection development of Meloidogyne incognita on cotton as affected by Glomus intraradices and phosphorus. J. Nematol. 18, 429–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, S.E., F.A. Smith, I. Jakobsen, 2003: Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 133, 16–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trouvelot, A., J.L. Kough, V. Gianinazzi-Pearson, 1986: Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: V. Gianinazzi-Pearson, S. Gianinazzi (eds.): Physiological and Genetical Aspects of Mycorrhizae, pp. 217–221. Inra Press, Paris.

    Google Scholar 

  • Vierheilig, H., A.P. Coughlan, U. Wyss, Y. Piché, 1998: Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol. 64, 5004–5007.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weller, D.M., 1988: Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26, 379–407.

    Article  Google Scholar 

  • Whipps, J.M., 1997: Developments in the biological control of soilborne pathogens. Adv. Bot. Res. 26, 1–133.

    Article  Google Scholar 

  • Whipps, J.M., 2001: Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511.

    Article  CAS  PubMed  Google Scholar 

  • Wyss, P., T.H. Boller, A. Wiemken, 1992: Testing the effect of biological control agents on the formation of vesicular arbuscular mycorrhiza. Plant Soil 147, 159–162.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Sikora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimann, S., Hauschild, R., Hildebrandt, U. et al. Interrelationships between Rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the root-knot nematode Meloidogyne incognita on tomato. J Plant Dis Prot 115, 108–113 (2008). https://doi.org/10.1007/BF03356249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356249

Key words

Stichwörter

Navigation