Advertisement

Journal of Plant Diseases and Protection

, Volume 114, Issue 6, pp 256–262 | Cite as

Control of powdery mildew of grape in Greece using Sporodex® L and Milsana®

  • S. Konstantinidou-Doltsinis
  • E. Markellou
  • A. -M. Kasselaki
  • E. Siranidou
  • A. Kalamarakis
  • K. Tzembelikou
  • A. Schmitt
  • C. Koumakis
  • N. Malathrakis
Article

Abstract

Six field trials were conducted in Greece to study the efficacy of two formulations of Reynoutria sachalinensis extract (Milsana® Vp 1999 & 2001) and a formulation of Pseudozyma flocculosa (Sporodex® L) against powdery mildew (Uncinula necator) of grapes. In three trials where Milsana® was tested alone it was found that a) both formulations significantly reduced disease severity on berries, b) its efficacy was moderate to low but within the range of sulphur treatment alone and c) significant increase in yield was obtained in one out of two trials where yield was measured. In two field trials where Sporodex® L was tested it was found that a) it was effective on moderate to high disease pressure on bunches, but its efficacy declined when disease severity was extremely high and b) its efficacy was similar or inferior to that of sulphur alone. Alternated applications of Milsana® and Sporodex® L tested in one trial improved the efficacy of Milsana®, but not that of Sporodex® L. Alternation of Milsana® and Sporodex® L with sulphur did not result in significantly better efficacy than the stand alone applications of the control agents (one trial). The potential use of Milsana® or Sporodex® L in low input systems in grapes is discussed.

Key words

biological control plant extract Pseudozyma flocculosa Reynoutria sachalinensis Uncinula necator 

Wirkung von Sporodex® und Milsana® gegenüber dem Echten Mehltau der Rebe

Zusammenfassung

Sechs Feldversuche wurden in Griechenland zur Untersuchung der Wirksamkeit zweier Formulierungen von Reynoutria sachalinensis-Extrakten (Milsana® VP 1999 & 2001) und einer Formulierung von Pseudozyma flocculosa (Sporodex® L) gegenüber dem Echten Mehltau der Rebe (Uncinula necator) durchgeführt. In drei Versuchen mit Milsana® als alleinigem Präparat wurde gefunden, dass a) beide Formulierungen die Befallsstärke des Mehltaus an den Trauben signifikant verminderten, b) die Wirksamkeit gering bis moderat, aber innerhalb des Bereichs von Schwefelbehandlungen war, und c) eine signifikante Ertragssteigerung in einem von zwei Versuchen mit Ertragsmessungen erzielt wurde. In zwei Versuchen mit Sporodex® L wurde festgestellt, dass das Präparat a) bei moderaten bis hohen Befallsstärken an Trauben wirkte, während die Wirksamkeit bei sehr hohen Befallsstärken abnahm, und b) seine Wirksamkeit mit der einer alleinigen Schwefelbehandlung vergleichbar oder geringer war. Abwechselnde Behandlungen mit Milsana® und Sporodex® L erhöhten die Wirksamkeit von Milsana®, nicht aber von Sporodex® L in einem Versuch. Abwechselnde Behandlungen mit Milsana®, Sporodex® L und Schwefel in einem weiteren Versuch erhöhten die Wirksamkeit der entsprechenden Einzelbehandlungen nicht signifikant. Das Potenzial von Milsana® und Sporodex® L im Weinbau mit geringer Bewirtschaftungsintensität wird diskutiert.

Stichwörter

biologische Kontrolle Pflanzenextrakt Pseudozyma flocculosa Reynoutria sachalinensis Uncinula necator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Aziz, A., B. Poinssot, X. Daire, M. Adrian, A. Bézier, B. Lambert, J.M. Joubert, A. Pugin, 2003: Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol. Plant-Microbe Interact. 16, 1118–1128.CrossRefPubMedGoogle Scholar
  2. Bélanger, R.R., C. Labbé, 2002: Control of powdery mildews without chemicals: Prophylactic and biological alternatives for horticultural crops. In: R.R. Bélanger, W.R. Bushnell, A.J. Dik, T.L.W. Carver (eds): The Powdery Mildews — A Comprehensive Treatise, pp. 256–267. APS Press, St Paul, MN, USA.Google Scholar
  3. Benyagoub, M., C. Willemot, R.R. Bélanger, 1996: Purification and characterization of new fatty acids with antibiotic activity produced by Sporothrix flocculosa. J. Chem. Ecol. 22, 405–413.CrossRefPubMedGoogle Scholar
  4. Boekhout, T., 1995: Pseudozyma Banandoni emend. Boekhout, a genus for yeast-like anamorphs of Ustilaginales. J. Gen. Appl. Microbiol. 41, 355–366.CrossRefGoogle Scholar
  5. Brent, K.J., 1995: Fungicide resistance in crop pathogens. How can it be managed? FRAC Monograph No 1.GCPF, Brussels, Belgium.Google Scholar
  6. Choudhury, S.R., J.A. Tranquair, W.R. Jarvis, 1994: 4-Methyl-7, 11-heptadecadenal and -4-Methyl-7,11-heptadecadienoicacid: New antibiotics from Sporothrix flocculosa and Sporothrix rugulosa. J. Nat. Prod. 57, 700–704.CrossRefPubMedGoogle Scholar
  7. Cohen, Y., M. Reuveni, A. Baider, 1999: Local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasmopara viticola in grapevines. Eur. J. Plant Pathol. 105, 351–361.CrossRefGoogle Scholar
  8. Daayf, F., R. Bel-Rhlid, R.R. Bélanger, 1997a: Methyl ester of p-coumaric acid, a phytoalexin like compound from long English cucumber leaves. J. Chem. Ecol. 23, 1517–1526.CrossRefGoogle Scholar
  9. Daayf, F., A. Schmitt, R. Bélanger, 1995: The effects of plant extracts of Reynoutria sachalinensis on powdery mildew development and leaf physiology of long English cucumber. Plant Dis. 79, 577–580.CrossRefGoogle Scholar
  10. Daayf, F., A. Schmitt, R.R. Bélanger, 1997b: Evidence of phytoalexins in cucumber leaves infected with powdery mildew following treatment with leaf extracts of Reynoutria sachalinensis. Plant Physiol. 113, 719–727.PubMedPubMedCentralGoogle Scholar
  11. Dik, A.J., M.A. Verhaar, R.R. Bélanger, 1998: Comparison of three biological control agents against cucumber powdery mildew (Sphaerotheca fuliginea) in semi-commercial-scale glasshouse trials. Eur. J. Plant Pathol. 104, 413–423.CrossRefGoogle Scholar
  12. Evans, K.J., D.L. Whisson, E.S. Scott, 1996: An experimental system for characterizing isolates of Uncinula necator. Mycological Res. 100, 675–680.CrossRefGoogle Scholar
  13. Gump, B., V. Wahlstrom, R. Pham, 1996: Determination of sulphur residues on grapes using flame atomic absorption spectrometry. Acta Hort. 427, 369–377.CrossRefGoogle Scholar
  14. Hajlaoui, M.R., R.R. Bélanger, 1991: Comparative effects of temperature and humidity on the activity of three potential antagonists of rose powdery mildew. Neth. J. Plant Pathol. 97, 203–208.CrossRefGoogle Scholar
  15. Hajlaoui, M.R., R.R. Bélanger, 1993: Antagonism of the yeast-like phylloplane fungus Sporothrix flocculosa against Erysiphe graminis var. tritici. Biocontrol Sci. Technol. 3, 427–434.CrossRefGoogle Scholar
  16. Hajlaoui, M.R., N. Benhamou, R.R. Bélanger, 1992: Cytochemical study of the antagonistic activity of Sporothrix flocculosa on rose powdery mildew Sphaerotheca pannosa var. rosae. Phytopathology 82, 583–589.CrossRefGoogle Scholar
  17. Halleen, F., G. Holz, 2001: An overview of the biology, epide-miology and control of Uncinula necator (powdery mildew), on grapevine, with reference to South Africa. S. Afr. J. Enol. Vitic. 22, 11–121.Google Scholar
  18. Herger, G., F. Klingauf, 1990: Control of powder y mildew fungi with extracts of the giant knotweed, Reynoutria sachalinensis (Polygonaceae). Med. Fac. Landbouww. Rijksuniv. Gent 55, 1007–1014.Google Scholar
  19. Jarvis, W.R., L.A. Shaw, J.A. Traquair, 1989: Factors affecting antagonism of cucumber powdery mildew by Stephanoascus flocculosus and S. rugulosus. Mycol. Res. 92, 162–165.CrossRefGoogle Scholar
  20. Kates, M., 1986: Techniques in lipidology: isolation, analysis identification of lipids. In: R.H. Burdon, P.H. van Knippenberg (eds.): Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 3, part 2, pp. 100–111. Elsevier, Amsterdam.Google Scholar
  21. Lefranc, G., J.M. Joubert, 2004: The new substance “Laminar-in” — a significant approach in crop protection (in greek). Proceedings of the 4th Panhellenic Meeting on Crop Protection, 2–4 March, pp. 179–189.Google Scholar
  22. McNally, D.J., K.V. Wurms, C. Labbé, R.R. Bélanger, 2003: Synthesis of C-glycosyl flavonoid phytoalexins as a site-specific response to fungal penetration in cucumber. Physiol. Mol. Plant Pathol. 63, 293–303.CrossRefGoogle Scholar
  23. Müller, S., 2004: Resistenzinduktion und Pathogenabwehr durch Reynoutria sachalinensis-Extrakt und Physcion: Signalkette im Vergleich zu systemischen Induktoren und Beziehungen zur Hypersensitiven Reaktion. PhD thesis, University of Bonn, Germany.Google Scholar
  24. Paulitz, T.C., R.R. Bélanger, 2001: Biological control in green-house systems. Annu. Rev. Phytopathol. 39, 103–133.CrossRefPubMedGoogle Scholar
  25. Petsikos-Panayotarou, N., A. Schmitt, E. Markellou, A.E. Kalamarakis, K. Tzempelikou, E. Siranidou, S. Konstantinidou-Doltsinis, 2002: Management of cucumber powder y mildew by new formulations of Reynoutria sachalinensis (F. Schmidt) Nakai extract. Z. Pflanzenk. Pflanzen. — J. Plant Dis. Protect. 109, 173–182.Google Scholar
  26. Reuveni, M., T. Zahari, Y. Cohen, 2001: Controlling downy mildew (Plasmopara viticola) in field-grown grapevine with ß-aminobutyric acid (BABA). Phytoparasitica 29, 125–133.CrossRefGoogle Scholar
  27. Riches, D., R. Holmes, 2005: Control of downy mildew of grapevines by boosting their natural defence system. Final Report to Grape and Vine Research and Development Corporation. Department of Primary Industries, Victoria, Australia.Google Scholar
  28. Richtlinien für die amtliche Prüfung von Pflanzenschutz-Mitteln, Teil Ii, 22-1.4, 1988: Richtlinie fuer die Pruefung von Fungiziden zur Bekämpfung von Uncinula necator (Schwein. Burr.) an Reben. Biologische Bundesanstalt für Land- und Forstwirtschaft, Abteilung für Pflanzenschutzmittel und Anwendungtechnik der BBA.Google Scholar
  29. Sawyer Ostrom, G.A., B.H. Gump, R. Pham, 1996: Sulphur residues on wine grapes. Acta Hort. 427, 363–368.CrossRefGoogle Scholar
  30. Schmitt, A., 2002: Induced responses by plant extracts from Reynoutria sachalinensis: a case study. Bull. IOBC/WPRS 25, 83–89.Google Scholar
  31. Schmitt, A., S. Kunz, S. Nandi, B. Seddon, A. Ernst, 2002: Use of Reynoutria sachalinensis plant extracts, clay preparations and Brevibacillus brevis against fungal diseases of grape berries. In: Fördergemeinschaft Ökologischer Obstbau e.V. (FÖKO) an der Staatlichen Lehr- und Versuchsanstalt für Wein- und Obstbau (LVWO) Weinsberg. 10th International conference on cultivation technique and phytopathological problems in organic fruit-growing and viticulture; presentations at the meeting from 04-07.02.2002 Weinsberg Germany, pp. 146–151.Google Scholar
  32. Schmitt, A., B. Seddon, 2005: Biocontrol of plant pathogens with microbial BCAs and plant extracts — advantages and disadvantages of single and combined use. In: H.-W. Dehne et al. (eds.): Modern Fungicides and Antifungal Compounds IPV. Proceedings of the 14th International Reinhardsbrunn Symposium 2004: BCPC, Atlon, UK, 205–225.Google Scholar
  33. Townsend, G.R., J.W. Heuberger, 1943: Methods for estimating losses caused by diseases in fungicide experiments. Plant Dis. Rep. 27, 340–343.Google Scholar
  34. Trouvelot, S., M. Allegre, J.M. Joubert, A. Pugin, X. Daire, 2006: Cytological aspects of elicitor-induced resistance against Plasmopara viticola. IOBC/WPRS-EFPP Working group: European Meeting of the IOBC/WPRS Working group “Breeding for inducible resistance against pests and diseas-es”, April 27–29, 2006, Heraklion, Greece, p. 7.Google Scholar
  35. Von Amsberg, H., S. Watanabe, 2002: Does Milsana® bioprotectant induce resistance in greenhouse as well as in field-grown plants? Bull. IOBC/WPRS 25, 193–196.Google Scholar
  36. Wurms, K., C. Labbé, N. Benhamou, R.R. Bélanger, 1999: Effects of Milsana and benzothiadiazole on the ultrastructure of powdery mildew haustoria on cucumber. Phytopathology 89, 728–736.CrossRefPubMedGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2007

Authors and Affiliations

  • S. Konstantinidou-Doltsinis
    • 1
  • E. Markellou
    • 2
  • A. -M. Kasselaki
    • 3
  • E. Siranidou
    • 1
  • A. Kalamarakis
    • 2
  • K. Tzembelikou
    • 1
  • A. Schmitt
    • 4
  • C. Koumakis
    • 3
  • N. Malathrakis
    • 3
  1. 1.Institute of Plant Protection, Amerikis and NeoNational Agricultural Research FoundationPatrasGreece
  2. 2.Benaki Phytopathological InstituteAthensGreece
  3. 3.School of Agricultural TechnologyTechnological Education Institute of CreteHeraklionGreece
  4. 4.Federal Biological Research Centre for Agriculture and ForestryInstitute for Biological ControlDarmstadtGermany

Personalised recommendations