Skip to main content
Log in

The effect of benzothiadiazole and fungal extracts of Cercospora beticola and Fusarium graminearum on phosphoenolpyruvate carboxylase activity in cucumber leaves

Die Wirkung von Benzothiadiazol sowie Extrakten von Cercospora beticola und Fusarium graminearum auf die Phosphoenolpyruvat-Carboxylase-Aktivität in Gurkenblättern

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The cytosolic phosphoenolpyruvate carboxylase (PEPC) catalyses the anaplerotic synthesis of oxalacetic acid resulting in the replenishment of citric acid cycle intermediates, which are precursors for the synthesis of amino acids. Biotic stress in plants generally leads to redistributions in primary and secondary pathways and therefore to a shift in the requirement of proteins. To reveal whether and how PEPC is affected by biotic stress we analysed PEPC activity after treating cucumber (Cucumis sativus) leaves with the synthetic plant activator benzothiadiazole (BTH) and extracts of the economically important phytopathogenic fungi Cercospora beticola and Fusarium graminearum. BTH as well as fungal extracts increased PEPC activity significantly 72 and 96 hours after treatments. In addition, the extracts, but not BTH, induced the formation of necrotic lesions. Defence responses are generally associated with decreased photosynthesis rates, an enhanced respiration rate and an increased demand in proteins. Regarding our results we assume that the increase in PEPC activity by biotic stress is conducive to a compensation of these antagonistic processes. However, PEPC activity enhancements are not necessarily associated with the formation of necrotic lesions. This study indicates that PEPC is involved in biotic stress responses and we suggest that PEPC contributes to successful defence responses in plants.

Zusammenfassung

Die cytosolisch vorliegende Phosphoenolpyruvat-Carboxylase (PEPC) katalysiert die Synthese von Oxalessigsäure aus Phosphoenolpyruvat und respiratorisch gebildetem Kohlenstoffdioxid. Sie fungiert als anaplerotisches Enzym im Citratzyklus, welcher unter anderem die Kohlenstoffgerüste für die Aminosäuresynthese bereitstellt. Biotische Stresssituationen führen in Pflanzen generell zu Umverteilungen des Primär- und Sekundärstoffwechsels und daraus resultierend auch zu einem veränderten Bedarf an Proteinen. Um festzustellen, ob und wie sich biotischer Stress auf die PEPC-Aktivität auswirkt, wurden Blätter der Gurke (Cucumis sativus) mit dem synthetischen Pflanzeninduktur Benzothiadiazol (BTH) und mit Extrakten der wirtschaftlich bedeutenden phytopathogenen Pilze Fusarium graminearum und Cercospora beticola behan-delt. Sowohl die Applikation von Bth als auch die Applikation der Pilzextrakte führte zu signifikanten Steigerungen der PEPC-Aktivität 72 und 96 Stunden nach der Behandlung. Weiterhin wurde durch die Extrakte, aber nicht durch Bth, die Bildung nekrotischer Läsionen an den behandelten Blättern induziert. Biotischer Stress an Pflanzen führt generell zu verringerten Photosyntheseraten, erhöhten Respirationsraten und einem höheren Bedarf an Proteinen. Die aus dieser Untersuchung gewonnenen Ergebnisse lassen darauf schließen, dass die Erhöhung der PEPC-Aktivität zu einer Kompensation dieser antagonistischen Prozesse beiträgt. Dabei ist eine Steigerung der PEPC-Aktivität nicht zwangsläufig mit hypersensitiven Reaktionen assoziiert. Die hier durchgeführte Studie zeigt, dass PEPC eindeutig in pflanzliche Reaktionen auf biotischen Stress involviert ist und vermutlich mitverantwortlich ist für eine erfolgreiche Abwehrstrategie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bandurski, R., C.M. Greiner, 1953: The enzymatic synthesis of oxaloacetate from phosphoryl-enolpyruvate and carbon dioxide. J. Biol. Chem. 204, 781–786.

    CAS  PubMed  Google Scholar 

  • Bassanezi, R.B., L. Amorim, A. Bergamin, R.D. Berger, 2002: Gas exchange and emission of chlorophyll fluorescence during the monocycle of rust, angular leaf spot and anthracnose on bean leaves as a function of their trophic characteristics. J. Phytopathol. 150, 37–47.

    Article  CAS  Google Scholar 

  • Berger, S., M. Papadopoulos, U. Schreiber, W. Kaiser, T. Roitsch, 2004: Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol. Plant. 122, 419–428.

    Article  CAS  Google Scholar 

  • Bonfig, K.B., U. Schreiber, A. Gabler, T. Roitsch, S. Berger, 2006: Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M., 1976: A rapid and sensitive method fort the quantitation of microgramm quantities of protein utilizing the principle of dye-binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Danson, J., K. Wasano, A. Nose, 2000: Infection of rice plants with the sheat blight fungus causes an activation of pentose phosphate and glycolytic pathways. Eur. J. Plant Pathol. 106, 555–561.

    Article  CAS  Google Scholar 

  • Deepak, S.A., H. Ihii, P. Park, 2006: Acibenzolar-S-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack. Physiol. Mol. Plant Pathol. 69, 52–61.

    Article  CAS  Google Scholar 

  • De Nisi, P., G. Zocchi, 2000: Phosphoenolpyruvate carboxylase in cucumber (Cucumis sativus L.) roots under iron deficiency: Activity and kinetic characterization. J. Exp. Bot. 51, 1903–1909.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich, R., K. Ploß, M. Heil, 2004: Constitutive and induced resistance to pathogens in Arabidopsis thaliana depends on nitrogen supply. Plant Cell Environ. 27, 896–906.

    Article  CAS  Google Scholar 

  • Dixon, R.A., L. Achnine, P. Kota, C.J. Liu, M.S.S. Reddy, L.J. Wang, 2002: The phenylpropanoid pathway and plant defence — a genomics perspective. Mol. Plant Pathol. 3, 371–390.

    Article  CAS  PubMed  Google Scholar 

  • Ebel, J., A. Mithöfer, 1998: Early Events in the Elicitation of Plant Defence. Planta 206, 335–348.

    Article  CAS  Google Scholar 

  • Foyer, C.H., M. Parry, G. Noctor, 2003: markers and signals associated with nitrogen assimilation in higher plants. J. Exp. Bot. 54, 585–593.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich, L., K. Lawton, W. Ruess, P. Masner, N. Specker, M.G. Rella, B. Meier, S. Dincher, T. Staub, S. Uknes, J.-P. Metraux, H. Kessmann, J. Ryals, 1996: A benzothiadiazole derivate induces systemic acquired resistance in tobacco. Plant J. 10, 61–70.

    Article  CAS  Google Scholar 

  • Garcia-Brugger, A., O. Lamotte, E. Vandelle, S. Bourque, D. Lecourieux, B. Poinssot, D. Wendehenne, A. Pugin, 2006: Early signaling events induced by elicitors of plant defenses. Mol. Plant-Microbe Interact. 19, 711–724.

    Article  CAS  PubMed  Google Scholar 

  • Görlach, J., S. Volrath, G. Knauf-Beiter, G. Hengy, U. Beckhove, K.H. Kogel, M. Oostendorp, T. Staub, E. Ward, H. Kessmann, J. Ryals, 1996: Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8, 629–643.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouia, H., A. Suzuki, J. Brulfert, M.H. Ghorbal, 2003: Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. J. Plant Physiol. 160, 367–376.

    Article  CAS  PubMed  Google Scholar 

  • Graham, T.L., M.Y. Graham, 1999: Role of hypersensitive cell death in conditioning elicitation competency and defense potentiation. Physiol. Mol. Plant Pathol. 55, 13–20.

    Article  Google Scholar 

  • Greenberg, J.T., 1997: Programmed cell death in plant-pathogen interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 525–545.

    Article  CAS  PubMed  Google Scholar 

  • Hahlbrock, K., D. Scheel, 1989: Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 347–369.

    Article  CAS  Google Scholar 

  • Hammond-Kosack, K.E., J.D.G. Jones, 1996: Resistance gene-dependent plant defense responses. Plant Cell 8, 1773–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegen, E., A. Strömberg, U. Pihlgren, E. Kombrink, 2002: Primary structure and tissue-specific expression of the pathogenesis related protein PR-1b in potato. Mol. Plant Pathol. 3, 329–345.

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson, S.W., 1998: Current concepts of active defense in plants. Annu. Rev. Phytopathol. 36, 59–90.

    Article  CAS  PubMed  Google Scholar 

  • Jeanneau, M., J. Vidal, A. Gousset-Dupont, B. Lebouteiller, M. Hodges, D. Gerentes, P. Perez, 2002: Manipulating PEPC levels in plants. J. Exp.l Bot. 53, 1837–1845.

    Article  CAS  Google Scholar 

  • Johnson, J.F., C.P. Vance, D.L. Allan, 1996: Phosphorus deficiency in Lupinus albus — Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxy-lase. Plant Physiol. 112, 31–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahlke, B., J. Brasch, E. Christophers, J.-M. Schröder, 1996: Dermatophytes containing a novel lipid-like leukocyte activator. J. Invest. Dermatol. 107, 108–112.

    Article  CAS  PubMed  Google Scholar 

  • Knogge, W., 1996: Molecular basis of specificity in host/fungus interactions. Eur. J. Plant Pathol. 102, 807–816.

    Article  CAS  Google Scholar 

  • Knop, W., 1865: Quantitative Untersuchungen über den Ernährungsprozess der Pflanze. Landw. Versuchsstat. 7, 93–107.

    Google Scholar 

  • Lam, H.M., K. Coschigano, C. Schultz, R. Melooliveira, G. Tjaden, I. Oliveira, N. Ngai, M.H. Hsieh, G. Coruzzi, 1995: Use of Arabidopsis mutants and genes to study amide amino-acid biosynthesis. Plant Cell 7, 887–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawton, K.A., L. Friedrich, M. Hunt, K. Weymann, T. Delaney, H. Kessmann, T. Staub, J. Ryals, 1996: Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10, 71–82.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H.I., J. Leon, I. Raskin, 1995: Biosynthesis and metabolism of salicylic acid. Proc. Natl. Acad. Sci. USA 92, 4076–4079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, K.C., W.R. Bushnell, A.G. Smith, L.J. Szabo, 1998: Temporal accumulation patterns of defence response gene transcripts in relation to resistant reactions in oat inoculated with Puccinia graminis. Physiol. Mol. Plant Pathol. 52, 95–114.

    Article  CAS  Google Scholar 

  • Melzer, E., M.H. O’Leary, 1987: Anapleurotic CO2 Fixation by phosphoenolpyruvate carboxylase in C3 plants. Plant Physiology 84, 58–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melzer, E., M.H. O’Leary, 1991: Aspartic acid synthesis in C3 plants. Planta 185, 368–371.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, R.L., R. Hammerschmidt, 1992: Phenolic compounds and their role in disease resistance. Annu. Rev. Phytopathol. 30, 369–389.

    Article  CAS  Google Scholar 

  • Norman, E.G., A.B. Walton, D.H. Turpin, 1994: Immediate activation of respiration in Petroselinum crispum L. in response to the Phytophthora megasperma f. sp. glycinea elicitor. Plant Physiol. 106, 1541–1546.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nurnberger, T., 1999: Signal perception in plant pathogen defense. Cell. Mol. Life Sci. 55, 167–182.

    Article  CAS  PubMed  Google Scholar 

  • Osbourn, A.E., 1996: Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8, 1821–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabotti, G., P. Denisi, G. Zocchi, 1995: Metabolic implications in the biochemical responses to iron-deficiency in cucumber (Cucumis sativus L.) roots. Plant Physiol. 107, 1195–1199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rademacher, T., R.E. Hausler, H.J. Hirsch, L. Zhang, V. Lipka, D. Weier, F. Kreuzaler, C. Peterhansel, 2002: An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. Plant J. 32, 25–39.

    Article  CAS  PubMed  Google Scholar 

  • Ryals, J.A., U.H. Neuenschwander, M.G. Willits, A. Molina, H.Y. Steiner, M.D. Hunt, 1996: Systemic acquired resistance. Plant Cell 8, 1809–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharte, J., H. Schon, E. Weis, 2005: Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ. 28, 1421–1435.

    Article  CAS  Google Scholar 

  • Schröder, J.-M., R. Häsler, J. Grabowsky, B. Kahlke, A.I. Mallet, 2002: Identification of diacylated ureas as a novel family of fungus-specific leukocyte-activating pathogen-associated molecules. J. Biol. Chem. 277, 27887–27895.

    Article  PubMed  Google Scholar 

  • Stitt, M., 1999: Nitrate regulation of metabolism and growth. Curr. Opin. Plant Biol. 2, 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Thatcher, L.F., J.P. Anderson, K.B. Singh, 2005: Plant Defence Responses: What have we learnt from Arabidopsis? Funct. Plant Biol. 32, 1–19.

    Article  CAS  Google Scholar 

  • Van Loon, L.C., 1997: Induced resistance in plants and the role of pathogenesis-related proteins. Eur. J. Plant Pathol. 103, 753–765.

    Article  Google Scholar 

  • Van Loon, L.C., M. Rep, C.M.J. Pieterse, 2006: Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135-162.

  • Wallsgrove, R.M., A.J. Keys, P.J. Lea, B.J. Miflin, 1983: Photo-synthesis, photo-respiration and nitrogen metabolism. Plant Cell Environ. 6, 301–309.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Aumann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krome, K., Kabsch, U. & Aumann, J. The effect of benzothiadiazole and fungal extracts of Cercospora beticola and Fusarium graminearum on phosphoenolpyruvate carboxylase activity in cucumber leaves. J Plant Dis Prot 114, 250–255 (2007). https://doi.org/10.1007/BF03356225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356225

Key words

Stichwörter

Navigation