Skip to main content
Log in

Analysis of antagonistic interactions between Trichoderma isolates from Brazilian weeds and the soil-borne pathogen Rhizoctonia solani

Analyse von antagonistischen Interaktionen zwischen Trichoderma-Isolaten von brasilianischen Wildkräutern und dem bodenbürtigen Schaderreger Rhizoctonia solani

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The soil-borne pathogen Rhizoctonia solani causes diseases on economically important crops worldwide. For many crops, appropriate methods to control the pathogen are currently not available. However, the use of naturally occurring antagonists offers the possibility for sustainable control strategies. Fungi, originally isolated from the rhizosphere of Brazilian wild plants, were analysed regarding their antagonistic activity against Rhizoctonia. A broad spectrum of antagonistic interactions was to be observed: inhibition of melanin formation in the fungal cell wall, antibiosis as well as mycoparasitism. Furthermore, we characterized the fungal antagonists by their morphology, genotype, and 18S rDNA sequencing which resulted in a high diversity of Trichoderma strains. The survival rate of Rhizoctonia mycelium following an interaction with the antagonists, which was analysed for 31 mycoparasitic isolates, showed high strain specificity and was temperature dependent. The influence on germination of sclerotia in substrate as well as on potato, the production of fungal cell wall-degrading enzymes, and the disease suppressive effect on lettuce were investigated for ten of the most efficient in vitro antagonists. Based on the screening strategy we could select three promising Trichoderma viride antagonists able to inhibit sclerotia germination of Rhizoctonia, to enhance plant growth, and to suppress disease symptoms on lettuce on a statistically significant level.

Zusammenfassung

Der bodenbürtige Erreger Rhizoctonia solani verursacht weltweit Krankheiten an zahlreichenökonomisch relevanten Kulturpflanzen; geeignete Methoden zur Bekämpfung fehlen oft. Die Nutzung von Antagonisten bietet Chancen für nach-haltige Bekämpfungsstrategien gegen R. solani. Pilze aus der Rhizosphäre brasilianischer Wildkräuter wurden hinsichtlich ihrer antifungischen Wirkung gegen Rhizoctonia geprüft. Hierbei zeigten sich vielfältige antagonistische Interaktionen: neben der Hemmung der Einlagerung von Melanin in die Hyphenzellwand von R. solani waren sowohl Antibiose als auch direkter Mykoparasitismus zu beobachten. Die Charak-terisierung der pilzlichen Antagonisten, die über ihre Morphologie, BOX-PCR und auf der Basis der 18S rDNA-Sequenz erfolgte, ergab eine hohe Diversität innerhalb der Gattung Trichoderma. Im Weiteren wurde von 31 Isolaten mit myko-parasitischer Aktivität der Einfluss auf die Überlebensfähigkeit des Myzels von R. solani nach Interaktion mit den ent-sprechenden Antagonisten untersucht, wobei sich eine hohe Isolatspezifität und Temperaturabhängigkeit zeigte. Von den 10 effektivsten Isolaten wurde der Einfluss auf die Sklerotien-Keimung in Substrat und an Kartoffelknollen geprüft, die Bildung Zellwand-lytischer Enzyme charakterisiert und die krankheitsunterdrückende Wirkung an Salat ermittelt. Basierend auf der durchgeführten Screening-Strategie konnten drei Trichoderma viride-Antagonisten zur biologischen Bekämpfung von R. solani selektiert werden. Diese waren in der Lage, die Keimung der Sklerotien sowohl im Substrat als auch an den Kartoffelknollen signifikant zu hemmen und zeigten eine wiederholte krankheitsunterdrückende Wirkung gegen R. solani sowie wachstumsfördernde Wirkung an Salat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature

  • Anderson, N.A., 1982: The genetics and pathology of Rhizoctonia solani. Annu. Rev. Phytopathol. 20, 329–374.

    Article  Google Scholar 

  • Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, W. Miller, D.J. Lipman, 1997: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou, N., I. Chet, 1996: Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum: Ultrastructural and cytochemical aspects of the interaction. Phytopathology 86, 405–416.

    Article  Google Scholar 

  • Benyagoub, M., S.H. Jabaji-Hare, H. Chamberland, P.M. Charest, 1996: Cytochemical and immunocytochemical investigation of the mycoparasitic interaction between Stachobotrys elegans and its host Rhizoctonia solani (AG-3). Mycol. Res. 100, 79–86.

    Article  Google Scholar 

  • Berg, G., C. Zachow, J. Lottmann, M. Götz, K. Smalla, 2005: Impact of soil type and plant species on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl. Environ. Microbiol. 71, 4203–4213.

    Article  CAS  PubMed  Google Scholar 

  • Berg, G., K. Opelt, C. Zachow, J. Lottmann, M. Götz, R. Costa, K. Smalla, 2006: The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FemS Microbiol. Ecol. 56, 250–261.

    Article  CAS  PubMed  Google Scholar 

  • Carling, D.E., S. Kuninaga, K.A. Brainard, 2002: Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology 92, 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Carisse, O., S.E. Bassam, N. Benhamou, 2001: Effect of Microsphaeropsis sp. strain P130a on germination and production of sclerotia of Rhizoctonia solani and interaction between the antagonist and the pathogen. Phytopathology 91, 782–791.

    Article  CAS  PubMed  Google Scholar 

  • Domsch, K.H., 1993: Compendium of soil fungi. IHW-Verlag, Echging, Germany.

    Google Scholar 

  • Druzhinina, I., C.P. Kubicek, 2005: Species concept and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J. Zhejiang Univ. Sci. 6B, 100–112.

    Article  Google Scholar 

  • Druzhinina, I., A.G. Kopchinskiy, M. Komon, J. Bissett, G. Szakacs, C.P. Kubicek, 2005: An oligonucleotide barcode in Trichoderma/Hypocrea. Fungal Genet. Biol. 42, 813–828.

    Article  CAS  PubMed  Google Scholar 

  • Emmert, E.A.B., J. Handelsman, 1999: Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Faltin, F., J. Lottmann, R. Grosch, G. Berg, 2004: Strategy to select and assess antagonistic bacteria for biological control of Rhizoctonia solani Kühn. Can. J. Microbiol. 50, 811–820.

    Article  CAS  PubMed  Google Scholar 

  • Fenille, R.C., M.B. Ciampi, E.E. Kuramae, N.L. Souza, 2003: Identification of Rhizoctonia solani associated with soybean in Brazil by rDna-Its sequences. Fitopatol. Brasil. 28, 413–419.

    Article  Google Scholar 

  • Godoy-Lutz, G., J.R. Steadman, B. Higgins, K. Powers, 2003: Genetic variation among isolates of the web blight pathogen of common bean based on PcR-RflP of the Its-rDna region. Plant Dis. 87, 766–771.

    Article  CAS  Google Scholar 

  • Grosch, R., F. Faltin, J. Lottmann, A. Kofoet, G. Berg, 2005a: Effectiveness of 3 antagonistic bacterial isolates to suppress Rhizoctonia solani Kühn on lettuce and potato. Can. J. Microbiol. 51, 345–353.

    Article  CAS  PubMed  Google Scholar 

  • Grosch, R., J. Lottmann, F. Faltin, G. Berg, 2005b: Biologische Kontrolle von Rhizoctonia solani. Ges. Pfl. 57, 199–205.

    Article  Google Scholar 

  • Harman, G.E., C.R. Howell, A. Viterbo, I. Chet, M. Lorito, 2004: Trichoderma species–opportunistic, avirulent plant symbionts. Nature Rev. Microbiol. 2, 43–56.

    Article  CAS  Google Scholar 

  • Hermosa, M.R., E. Keck, I. Chamorrol, B. Rubio, L. Sanz, J.A. Vizcainio, I. Grodona, E. Monte, 2004: Genetic diversity shown in Trichoderma biocontrol isolates. Mycol. Res. 1008, 897–906.

    Article  Google Scholar 

  • Howell, C.R., 2003: Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87, 4–10.

    Article  Google Scholar 

  • Kullnig, C., L.M. Robert, M. Lorito, C.P. Kubicek, 2000: Enzyme diffusion from Trichoderma atroviride (= T. harzianum P1) to Rhizoctonia solani is a prequesite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact. Appl. Environ. Microbiol. 66, 2232–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., S.R.M. Pinson, M.A. Marchetti, J.W. Stansel, W.D. Park, 1995: Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani) Theor. Appl. Genet. 91, 382–388.

    CAS  PubMed  Google Scholar 

  • Lorito, M., S.L. Woo, I. Garcia Fernandez, G. Colucci, G.E. Harman, J.A. Pintor-Toro, E. Filippone, S. Muccifora, C.B. Lawrence, A. Zoina, S. Tuzun, F. Scala, 1998: Genes from mycoparasitic fungi as a source for improving plant resistence to fungal pathogens. Proc. Natl. Acad. Sci. USA 95, 7860–7865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirenberg, H.I., 1976: Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitt. Biol. Bundesanst. 169, 1–117.

    Google Scholar 

  • Ogoshi, A., 1987: Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kühn. Annu. Rev. Phytopathol. 25, 125–143.

    Article  Google Scholar 

  • Paulitz, T.C., R.R. Belanger, 2001: Biological control in green-house systems. Annu. Rev. Phytopathol. 39, 103–133.

    Article  CAS  PubMed  Google Scholar 

  • Rademaker, J.L.W., F.J. De Bruijn, 1997: Characterization and classification of microbes by REP-PCR genomic fingerprinting and computer-assisted pattern analysis. In: G. Caetano-Anollés, P.M. Gresshoff (eds.): DNA Markers: Protocols, Applications and Overviews. J. Wiley & Sons, New York, USA.

    Google Scholar 

  • Rodrigues, F.A., F.X.R. Vale, L.E. Datnoff, A.S. Prabhu, G.H. Korndörfer, 2003: Effect of rice growth stages and silicon on sheath blight development. Phytopathology 93, 256–261.

    Article  PubMed  Google Scholar 

  • Schirmböck, M., M. Lorito, Y.L. Wang, C.K. Hayes, I. Arisan-Atac, F. Scala, G.E. Harman, C.P. Kubicek, 1994: Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl. Environ. Microbiol. 60, 4364–4370.

    PubMed  PubMed Central  Google Scholar 

  • Schneider, J.H.M., M.T. Schilder, G. Dijst, 1997: Characterization of Rhizoctonia solani AG-2 isolates causing bare patch in field-grown tulips in the Netherlands. Eur. J. Plant Pathol. 103, 265–279.

    Article  Google Scholar 

  • Tu, C.C., T.F. Hsieh, Y.C. Chang, 1996: Vegetable diseases incited by Rhizoctonia spp. In: B. Sneh, S. Jabaji-Hare, S.M. Neate, G. Dijst (eds.): Rhizoctonia species: Taxonomy, Molecular Biology, Ecology; Pathology and Disease Control, pp. 369–377. Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Vainio, E.J., J. Hantula, 2000: Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 104, 927–936.

    Article  CAS  Google Scholar 

  • Weller, D.M., J.M. Raaijmakers, B.B. Gardener, L.S. Thomashow, 2002: Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40, 309–348.

    Article  CAS  PubMed  Google Scholar 

  • Whipps, J.M., 2001: Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, P.F.J., J.-A. Verreet, 1999: Untersuchungen zur Epidemiologie und Schadrelevanz der Rhizoctonia-Rübenfäule (Rhizoctonia solani Kühn). Ges. Pfl. 51, 133–140.

    Google Scholar 

  • Zeilinger, G., C. Galhaup, K. Payer, S.L. Woo, R.L. Mach, C. Fekete, M. Lorito, C.P. Kubicek, 1999: Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with ist host. Fungal Genet. Biol. 26, 131–140.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Berg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grosch, R., Lottmann, J., Rehn, V.N.C. et al. Analysis of antagonistic interactions between Trichoderma isolates from Brazilian weeds and the soil-borne pathogen Rhizoctonia solani. J Plant Dis Prot 114, 167–175 (2007). https://doi.org/10.1007/BF03356213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356213

Key words

Stichwörter

Navigation