Advertisement

Journal of Plant Diseases and Protection

, Volume 114, Issue 1, pp 9–13 | Cite as

Association between lipoxygenase and peroxidase activity and systemic protection of cucumber plants against Podosphaera xanthii induced by Oudemansiella canarii extracts

  • M. J. Stadnik
  • W. Bettiol
Article

Abstract

This study was done to determine the relationship between the changes in lipoxygenase (LOX) and peroxidase (POX) activity and the protection of cucumber (Cucumis sativus) against powdery mildew (Podosphaera xanthii) induced by hexane or ethyl acetate extracts of basidiocarps of Oudeman-siella canarii. At the two-leaf stage, only the primary leaves of the greenhouse grown cucumber plants were sprayed with either extract. The secondary leaves were inoculated at 1, 4, 7 or 10 days after the spray and the number of powdery mildew colonies were counted after 6 days. The LOX and POX activity in secondary leaves was determined 24 h after inoculation. In vitro antimicrobial effect of the extracts was tested against Bacillus and Cladosporium. Maximum disease reduction (85%) occurred when plants were inoculated one day after applying hexane extract. The disease reduction then decreased abruptly to 30% on the 4th day, but then increased again when plants were inoculated seven or ten days after treatment. LOX activity increased only by the hexane extract application, but not by the pathogen. POX activity was higher in inoculated plants previously treated with the hexane extract. On the other hand, ethyl acetate extract did not affect the enzyme activity and its protection efficacy decreased continuously with increasing time interval between treatment and inoculation. Although both extracts showed antimicrobial activity in vitro, the results suggest that apolar compound(s) from the basidiocarps of O. canarii also induce systemic resistance to powdery mildew.

Key words

Cucumis sativus fungus extract induced resistance mushroom Podosphaera xanthii 

Zusammenhang zwischen den Lipoxygenase- und Peroxidaseaktivitäten und dem durch Extrakte von Oudemansiella canarii induzierten systemischen Schutz gegen Podosphaera xanthii an Gurken

Zusammenfassung

Ziel dieser Arbeit war es, die Beziehung zwischen den Veränderungen von Lipoxygenase- und Peroxidaseaktivität und dem durch Extrakte von Oudemansiella canarii induzierten Schutz gegen den Echten Gurkenmehltau (Podosphaera xanthii) zu untersuchen. Dazu wurden Extrakte aus Fruchtkörpern von Oudemansiella mit Hexan und Ethylacetat hergestellt. Die Gurkenpflanzen (Cucumis sativus) wurden unter Gewächshausbedingungen angezogen und im Zweiblattstadium wurden nur die Primärblätter mit den Extrakten gespritzt. Die Inokulation erfolgte 1, 4, 7 oder 10 Tage nach der Extraktbehandlung und die Mehltaukolonien auf dem Sekundärblatt wurden 6 Tage später ausgezählt. Die Aktivitäten von Lipoxygenase (LOX) und Peroxidase (POX) wurden immer 24 Stunden nach der Inokulation gemessen. Die antimikrobielle Wirkung von beiden Extrakten wurde gegenüber Bacillus and Cladosporium getestet. Der Hexanextrakt führte zur stärksten Befallsreduktion (85%) bei Pflanzen, die einen Tag nach der Behandlung inokuliert wurden. Danach sinkt die Befallsreduktion zuerst am 4. Tag auf 30%, erhöht sich jedoch am 7. bzw. 10. Tag nach der Behandlung wieder. Im Gegensatz dazu beeinflusste der Ethylacetatextrakt die Enzymeaktivitäten nicht und seine Schutzeffizienz sank mit zunehmender Dauer zwischen Behandlung und Inokulation kontinuierlich. Obwohl beide Extrakte eine antimikrobielle Wirkung in vitro aufweisen, deuten die Ergebnisse darauf hin, dass die nicht polaren Verbindung(en) aus Oudemansiella-Fruchtkörpern systemische Resistenz von Gurken gegen den Echten Mehltau induzieren können.

Stichwörter

Cucumis sativus induzierte Resistenz Pilz pilzlicher Extrakt Podosphaera xanthii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Anke, T., 1997: Strobilurins. In: Anke, T. (ed.): Fungal Biotechnology, pp. 206–212. Chapman & Hall, Weinheim.Google Scholar
  2. Avdiushko, A.A., X.S. Ye, D.F. Hildebrand, J. Kuc, 1993: Induction of lipoxygenase activity in immunized cucumber plants. Physiol. Mol. Plant Pathol. 42, 83–95.CrossRefGoogle Scholar
  3. Bashan, B., Y. Cohen, 1983: Tobacco necrosis virus induces systemic resistance in cucumbers against Sphaerotheca fuliginea. Physiol. Plant Pathol. 23, 137–144.CrossRefGoogle Scholar
  4. Bélanger, R.R., C. Labbé, 2002: Control of powdery mildews without chemicals: prophylactic and biological alternatives for horticultural crops. In: R.R. Bélanger, W.R. Bushnell, A.J. Dik, T.L.W. Carver (eds.): The Powdery Mildews–A Comprehensive Treatise, pp. 256–267. APS Press, St. Paul, MN, USA.Google Scholar
  5. Bradford, M.M., 1976: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.CrossRefPubMedGoogle Scholar
  6. Conrath, U., O. Thulke, V. Katz, S. Schwindling, A. Kohler, 2001: Priming as a mechanism in induced systemic resistance of plants. Eur. J. Plant Pathol. 107, 113–119.CrossRefGoogle Scholar
  7. Conti, C.G., A. Pianezzola, G. Violini, D. Maffi, 1996: Possible involvement of salicylic acid in systemic resistance of Cucumis sativus against Sphaerotheca fuliginea. Eur. J. Plant Pathol. 102, 537–544.CrossRefGoogle Scholar
  8. Di Piero, R.M., N.A. Wulff, S.F. Pascholati, 2006: Partial purification of elicitors from Lentinula edodes basidiocarps protecting cucumber seedlings against Colletotrichum lage-narium. Braz. J. Microbiol. 37, 175–180.CrossRefGoogle Scholar
  9. Hause, B., K. Vörös, K.-H. Kogel, K. Besser, C. Wasternack, 1999: A jasmonate-responsive LOX of barley leaves is induced by plant activators but not by pathogens. J. Plant Physiol. 154, 459–462.CrossRefGoogle Scholar
  10. Mucharromah, E., J. Kuc, 1991: Oxalate and phosphates induce systemic resistance against diseases caused by fungi, bacteria and viruses in cucumber. Crop Prot. 10, 266–270.CrossRefGoogle Scholar
  11. Nerud, F., V. Musílek, 1976: Composition of lipids and production of mucidin in a submerged culture of the basidiomycete Oudemansiella mucida. Folia Microbiol. 21, 488–492.CrossRefGoogle Scholar
  12. Orober, M., J. Siegrist, H. Buchenauer, 2002: Mechanisms of phosphate-induced disease resistance in cucumber. Eur. J. Plant Pathol. 108, 345–353.CrossRefGoogle Scholar
  13. Reuveni, M., V. Agapov, R. Reuveni, 1997: A foliar spray of micronutrient solutions induces local and systemic protection against powdery mildew (Sphaerotheca fuliginea) in cucumber plants. Eur. J. Plant Pathol. 103, 581–588.CrossRefGoogle Scholar
  14. Ruegger, M.J.S., S.M.T Tornisielo, V.L.R. Bononi, M. Capelari, 2001: Cultivation of the edible mushroom Oudemansiella canarii (Jungh.) Höhn. in lignocellulosic substrates. Braz. J. Microbiol. 32, 211–214.CrossRefGoogle Scholar
  15. Slusarenko, A.J., 1996: The role of lipoxygenase in plant resistance to infection. In: G. Piazza (ed.): Lipoxygenase and Lipoxygenase Pathway Enzymes, pp.176–197. AOCS Press, Champaign, IL, USA.CrossRefGoogle Scholar
  16. Stadnik, M.J., H. Buchenauer, 2000: Inhibition of phenylalanine ammonia-lyase suppresses the resistance induced by benzothiadiazole in wheat to Blumeria graminis f. sp. tritici. Physiol. Mol. Plant Pathol. 57, 25–34.CrossRefGoogle Scholar
  17. Stadnik, M.J., W. Bettiol, M.L. Saito, 2003: Bioprospecting for plant and fungus extracts with systemic effect to control the cucumber powdery mildew. Z. Pflanzenk. Pflanzen.–J. Plant Dis. Protect. 110, 383–393.Google Scholar
  18. Stadnik, M.J., S.H. El-Deeb, J. Kreer, H. Buchenauer, 1999: Effectiveness of a-aminoisobutyric acid as a translocatable fungistatic agent against Blumeria graminis f. sp. tritici in wheat. J. Plant Pathol. 81, 103–111.Google Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2007

Authors and Affiliations

  1. 1.Departamento de FitotecniaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Embrapa Meio AmbienteJaguariúnaBrazil

Personalised recommendations