Journal of Plant Diseases and Protection

, Volume 113, Issue 5, pp 225–233 | Cite as

Evidence of induced resistance of tomato plants against Phytophthora infestans by a water extract of dried biomass of Penicillium chrysogenum

  • C. Unger
  • I. Wilhelm
  • R. Jünger
  • R. Thalmann


The water extract of killed Penicillium chrysogenum (Pen) was used to induce resistance against Phytophthora infestans in tomato plants. After two treatments with Pen as foliar spray, a protection of over 90% was achieved compared to control plants. The protective effect was shown under controlled conditions with two assays, whole plants and on leaf disk. The achieved resistance was proportional to the content of total carbohydrate, assuming sugars to be involved as inducing compounds. The extract had no direct antifungal activity on in vitro growth of P. i n f e s t a n s, suggesting that disease control resulted from the induction of natural defense mechanisms in the tomato plants. The induction of resistance was accompanied by an activity increase of peroxidase enzymes. After separation of soluble, ionically cell wall-bound extracellular and cytosolic fractions, only the extracellular soluble fraction contained at least two isoenzymes specifically inducible by Pen and corresponding to the achieved resistance. Furthermore, application of Pen led to an acidification of the intercellular fluid in the leaf tissue. The intercellular acidification was closely associated with the achieved resistance indicating a participation in the resistance inducing process. The acidification of the intercellular space introduces a possibly new mode of action of resistance induction.

Key words

acidification extracellular intercellular fluid marker enzyme Pen peroxidase 

Hinweis auf induzierte Resistenz in Tomatenpflanzen gegenüber Phytophthora infestans durch einen wässrigen Extrakt getrockneter Biomasse von Penicillium chrysogenum


Der wässrige Extrakt von abgetötetem Penicillium chrysoge-num (Pen) wurde zur Resistenzinduktion bei Tomaten gegen Phytophthora infestans benutzt. Nach zwei Sprühapplikationen des Pen-Extrakts auf die Blätter wurde ein Schutz von über 90% im Vergleich zu den Kontrollpflanzen erreicht. Die Schutzwirkung wurde an Ganzpflanzen und Blattscheiben unter Gewächshausbedingungen getestet. Da der Effekt proportional zur Gesamtkohlenhydratkonzentration des Extrakts war, werden Zucker als aktive Komponenten vermutet. Der Extrakt zeigte keine direkte antifungale Aktivität auf das Wachstum von P. infestans. Das lässt auf eine Induktion pflanzlicher Abwehrmechanismen schließen. Die Resistenzinduktion wurde von einer Steigerung der Peroxidaseaktivität begleitet. Nach einer Trennung in extrazellulär lösliche, extrazellulär zellwandgebundene und cytoplasmatische Isoenzyme zeigte sich, dass ausschließlich in der extrazellulär löslichen Fraktion zwei Isoenzyme spezifisch durch die Behandlung mit Pen induziert wurden und ihre Aktivität proportional zum erreichten Resistenzgrad war. Weiterhin führte die Applikation von Pen zu einer starken Ansäuerung der Interzellularflüssigkeit des Blattgewebes. Die Ansäuerung des Interzellularraumes war eng mit dem erreichten Resistenzgrad verknüpft und scheint ein neuer Wirkmechanismus der Resistenzinduktion zu sein.


Ansäuerung extrazellulär Interzellular-flüssigkeit Markerenzym Pen Peroxidase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abad, M.S., S.M. Hakimi, W.K. Kaniewski, C.M.T. Rommens, V. Shulaev, E. Lam, D.M. Shah, 1997: Characterization of acquired resistance in lesion-mimic transgenic potato expressing bacterio-opsin. Mol. Plant-Microbe Interact. 10, 635–645.CrossRefPubMedGoogle Scholar
  2. Baysal, Ö., E.M. Soylu, S. Soylu, 2003: Induction of defense-related enzymes and resistance by the plant activator aciben-zolar-S-methyl in tomato seedlings against bacterial canker caused by Clavibacter Michiganensis ssp. Michiganensis. Plant Pathol. 52, 747–753.CrossRefGoogle Scholar
  3. Bestwick, C.S., I.R. Brown, J.W. Mansfield, 1998: Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce. Plant Physiol. 118, 1067–1078.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Christ, U., E. Mösinger, 1989: Pathogenesis-related proteins of tomato: I. Induction by Phytophthora infestans and other biotic and abiotic inducers and correlations with resistance. Physiol. Mol. Plant Pathol. 35, 53–65.CrossRefGoogle Scholar
  5. Dong, H., Y. Cohen,: Extract of killed Penicillium chrysogenum induce resistance against Fusarium wilt of Melon. Phytoparasitica 29, 421–430.Google Scholar
  6. Dong, H., Y. Cohen, 2002: Induced resistance in cotton seedlings against Fusarium wilt by dried biomass of Penicillium chrysogenum and its water extract. Phytoparasitica 30, 77–87.CrossRefGoogle Scholar
  7. Dubois, M., K. Gilles, J.K. Hamilton, P. Rebers, F. Smith, 1951: A colorimetric method for the determination of sugars. Nature 168, 167.CrossRefPubMedGoogle Scholar
  8. Felix, G., M. Regenass, T. Boller, 1993: Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: Induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J. 4, 307–316.CrossRefGoogle Scholar
  9. García-Limones, C, A. Hervas, J.A. Navas-Cortes, R.M. Jiménez-Díaz, M. Tena, 2002: Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp ciceris. Physiol. Mol. Plant Pathol. 61, 325–337.CrossRefGoogle Scholar
  10. Hammerschmidt, R., J. Kuc, 1995: Induced Resistance to Disease in Plants. Kluwer Academic Publishers, Dordrecht, Boston, London.CrossRefGoogle Scholar
  11. Haruta, M., C.P. Dconstabel, 2003: Rapid alkalinization factors (Ralfs) in poplar cell cultures: Peptide isolation, cDna cloning, and differential expression in leaves and methyl jasmonate-treated cells. Plant Physiol. 131, 814–823.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Heil, M., R.M. Bostock, 2002: Induced systemic resistance (ISR) against Pathogens in the context of induced plant defense. Ann. Bot. 89, 503–512.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kawano, T., S. Muto, 2000: Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. J. Exp. Bot. 51, 685–693.CrossRefPubMedGoogle Scholar
  14. Kessmann, H., T. Staub, C. Hofmann, T. Maetzke, J. Herzog, 1994: Induction of systemic acquired disease resistance in plants by chemicals. Annu. Rev. Phytopathol. 32, 439–459.CrossRefPubMedGoogle Scholar
  15. Laemmli, U.K., 1970: Cleavage of stuctural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.CrossRefPubMedGoogle Scholar
  16. Malolepsza, U., H. Urbanek, 1994: Changes in peroxidase activity in bean suspension cultures after B. cinerea and elicitor treatment. J. Phytopathol. 141, 314–322.CrossRefGoogle Scholar
  17. Mansfield, J.W., B.J. Deverall, 1974: The rates of fungal development and lesion formation in leaves of Vicia faba during infection by Botrytis cinerea and Botrytis fabae. Ann. Appl. Biol. 76, 77–89.CrossRefGoogle Scholar
  18. Minibaeva, F.V., L. Kh. Gordon, 2003: Superoxide production and the activity of extracellular peroxidase in plant tissues under stress conditions. Russ. J. Plant Physiol. 50, 411–416.CrossRefGoogle Scholar
  19. Nair, A.R., A.M. Showalter, 1996: Purification and characterization of a wound-inducible cell wall cationic peroxidase from carrot roots. Biochem. Biophys. Res. Commun. 226, 254–260.CrossRefPubMedGoogle Scholar
  20. Nawar, H.F., J.O. Kuti, 2003: Wyrone acid phytoalexin synthesis and peroxidase activity as markers for resistance of broad beans to chocolate spots disease. J. Phytopathol. 151, 564–570.CrossRefGoogle Scholar
  21. Ning, W., F. Chen, B. Mao, Q. Li, Z. Liu, Z. Guo, Z. He, 2004: N-acethylchitooligosaccharides elicit rice defense responses including hypersensitive respone-like cell death, oxidative burst and defense gene expression. Physiol. Mol. Plant Pathol. 64, 263–271.CrossRefGoogle Scholar
  22. Ombriri, J., V. Zinkernagel, E.M. Gathuru, O. Achwanya, 2002: Induction of ethylene biosynthesis and peroxidase activity in bean genotypes inoculated with Colletotrichum lindemuth-ianum and their role as indicators of resistance or susceptibility. Z. Pflanzenk. Pflanzen. — J. Plant Dis. Protect. 109, 152–158.Google Scholar
  23. Pozo, M.J., C. Cordier, E. Dumas-Gaudot, S. Gianinazzi, J.M. Barea, C. Azcon-Aguilar, 2002: Localized versus systemic effect of arbuscular mycorrhizal fungus on defense responses to Phytophthora infection in tomato plants. J. Exp. Bot. 53, 525–534.CrossRefPubMedGoogle Scholar
  24. Prusky, D., N. Yakoby, 2003: Pathogenic fungi: leading or led by ambient pH? Mol. Plant Pathol. 4, 509–516.CrossRefPubMedGoogle Scholar
  25. Reuveni, R., M. Shimoni, Z. Karchi, 1990: A rapid assay for monitoring peroxidase activity in melon as a marker for resistance to to Pseudoperonospora cubensis. J. Phytopathol. 129, 333–338.CrossRefGoogle Scholar
  26. Ryals, J., S. Uknes, E. Ward, 1994: Systemic aquired resistance. Plant Physiol. 104, 4202–4205.Google Scholar
  27. Schneider, M., P. Schweizer, P. Meuwly, J.-P. Métraux, 1996: Systemic acquired resistance in plants. Int. Rev. Cytol. 168, 303–340.CrossRefGoogle Scholar
  28. Shimoni, M., A. Bar-Zur, R. Reuveni, 1991: The association of peroxidase activity and resistance of maize to Exserhilum turcicum. J. Phytopathol. 131, 315–321.CrossRefGoogle Scholar
  29. Thomma, B.P.H.J, K. Eggermont, K.F.M.-J. Tierens, W.F. Broekaert, 1999: Requirement of functional ethylene-insen-sitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121, 1093–1101.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Thuerig, B., A. Binder, T. Boller, U. Guyer, S. Jimènez, C. Rentsch, L. Tamm, 2006: An aqueous extract of the dry mycelium of Penicillium chrysogenum induces resistance in several crops under controlled and field conditions. Eur. J. Plant Pathol. 114, 185–197.CrossRefGoogle Scholar
  31. Unger, C., S. Kleta, G. Jandl, A. von Tiedemann, 2005: Suppression of the defense related oxidative burst in bean leaf tissue and bean suspension cells by the necrotrophic pathogen Botrytis cinerea. J. Phytopathol. 153, 1–12.CrossRefGoogle Scholar
  32. van Loon, L.C., 1997: Induced resistance in plants and their role of pathogenesis-related proteins. Eur. J. Plant Pathol. 103, 753–765.CrossRefGoogle Scholar
  33. Vera-Estrella, R, B.J. Barkla, V.J. Higgins, E. Blumwald, 1994: Plant defense response to fungal pathogens, activation of host-plasma membrane H+-Atpase by elicitor-induced enzyme dephosphorylation. Plant Physiol. 104, 209–215.PubMedPubMedCentralGoogle Scholar
  34. von Tiedemann, A., 1997: Evidence for a primary role of oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol. Mol. Plant Pathol. 50, 151–166.CrossRefGoogle Scholar
  35. Wiese, J., T. Kranz, S. Schubert, 2004: Induction of pathogen resistance in barley by abiotic stress. Plant Biol. 6, 529–536.CrossRefPubMedGoogle Scholar
  36. Wu, Y.-X., A. von Tiedemann, 2001: Physiological effects of azoxystrobin and epoxiconazole on senescence and the oxidative status of wheat. Pestic.Biochem. Physiol. 71, 1–10.CrossRefGoogle Scholar
  37. Xue, L., P.M. Charest, S.H. Jabaji-Hare, 1998: Systemic induction of peroxidases, 1,3-b-glucanases, chitinases, and resistance in bean plants by binucleate Rhizoctonia species. Phytopathology 88, 359–365.CrossRefPubMedGoogle Scholar
  38. Zhou, F., Z. Zhang, P.L. Gregersen, J.D. Mikkelsen, E. de Neer-gaard, D.B. Collinge, H. Thordal-Christensen, 1998: Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol. 117, 33–34.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2006

Authors and Affiliations

  1. 1.Institute for Land Use — Crop HealthUniversity of RostockRostockGermany

Personalised recommendations