Journal of Plant Diseases and Protection

, Volume 113, Issue 4, pp 164–167 | Cite as

Effects of four monoterpenes on the growth in vitro of some Heterobasidion spp. and two Leptographium species

  • L. ZamponiEmail author
  • M. Michelozzi
  • P. Capretti


The inhibitory effects of the monoterpenes (−)-α-pinene, (−)-β-pinene, δ-3-carene and myrcene, in both the contact and the volatile phase, on Heterobasidion spp., Leptographium wingfieldii and Leptographium serpens were studied in vitro. Inhibition was usually greater when the monoterpenes were in contact with the fungi than when the fungi were exposed to the monoterpene vapours. Myrcene was the most strongly inhibiting compound for H. annosum s.l., followed by δ-3-carene; the Leptographium spp. were inhibited most strongly by δ-3-carene. Exposure to the monoterpenes reduced conidiogenesis in H. abietinum. After exposure of the fungi to the monoterpenes was discontinued, there were in general no residual effects on fungal growth, apart from Leptographium spp. that had been exposed to δ-3-carene.


growth in vitro Heterobasidion spp. Leptographium spp. monoterpenes toxicity 

Wirkung von vier Monoterpenen auf das in-vitro-Wachstum verschiedener Heterobasidion- und Leptographium-Arten


Der Hemmeffekt der Monoterpene (−)-α-Pinen, (−)-β-Pinen, δ-3-Caren und Myrcen gegenüber den Nadelbäume befallenden Pilzen Heterobasidion spp., Leptographium wingfieldii und Leptographium serpens wurde sowohl in direktem Kontakt als auch in der Gasphase unter in-vitro-Bedingungen untersucht. Der Hemmeffekt war gewöhnlich ausgeprägter bei direktem Kontakt mit den Monoterpenen als bei einer Exposition in der Gasphase. Myrcen hemmte H annosum s.l. am stärksten, gefolgt von δ-3-Caren, das wiederum das Wachstum von Lepto-graphium spp. am stärksten hemmte. Die Monoterpene beein-trächtigten darüber hinaus bei H abietum die Konidienbildung. Nach Beendigung der Exposition der Pilze verblieb, mit Ausnahme von δ-3-Caren ausgesetzten Leptographium spp., kein wachstumshemmender Residualeffekt der Monoterpene.


Heterobasidion spp. Leptographium spp. monoterpenes Wachstum in vitro Toxizität 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baradat, P., A. Marpeau, J. Walter, 1991: Terpene markers. In: G. Müller-Starck, M. Ziehe (eds.): Genetic variation in European populations of forest trees, 40–66. Sauerländer’s Verlag, Frankfurt am Main.Google Scholar
  2. Baradat, P., M. Michelozzi, R. Tognetti, M.-L. Khouja, A. Khaldi, 1996: Geographical variation of Pinus halepensis Mill. In: P. Baradat, W.T. Adams, G. Müller-Starck (eds.): Population Genetics and Genetic Conservation of Forest Trees, 141–158. SPB Academic Publishing, Amsterdam.Google Scholar
  3. Cates, R.-G., 1996: The role of mixture and variation in the production of terpenoids in conifer-insect pathogen interactions. In: J.T. Romeo, J.A. Saunders, P. Barbosa (eds.): Phytochemical Diversity and Redundancy in Ecological Interactions, vol. 30, 179–216. Plenum Press, New York.CrossRefGoogle Scholar
  4. Cheniclet, C., 1987: Effects of wounding and fungus inoculation on terpene producing systems of maritime pine. J. Exp. Bot. 194, 1557–1572.CrossRefGoogle Scholar
  5. Chou, C.-K.-S., J.A. Zabkiewicz, 1976: Toxicity of monoterpenes from Pinus radiata cortical oleoresin to Diplodia pinea spores. J. For. Path. 6, 354–359.CrossRefGoogle Scholar
  6. Cobb, F.-W., M. Krstic, E. Zavarin, H.-W. Barber, Jr., 1968: Inhibitory effects of volatile oleoresin components on Fomes annosus and four Ceratocystis species. Phytopathology 58, 1327–1335.Google Scholar
  7. Croteau, R., J. Gershenzon, 1994: Genetic control of monoterpene biosynthesis in mints (Mentha: Lamiaceae). In: B.E. Ellis, G.W. Kuroki, H.A. Stafford (eds.): Genetic Engineering of Plant Secondary Metabolism, 193–229. Springer-Verlag, New York.CrossRefGoogle Scholar
  8. De Groot, R.-C., 1972: Growth of wood-inhabiting fungi in saturated atmospheres of monoterpenoids. Mycologia 64, 863–870.CrossRefPubMedGoogle Scholar
  9. Delorme, L., F. Lieutier, 1990: Monoterpene composition of the preformed and induced resins of Scots pine, and their effect on bark beetles and associated fungi. Eur. J. For. Path. 20, 304–316.CrossRefGoogle Scholar
  10. Edris, A.-E., E.-S. Farrag, 2003: Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapour phase. Nahrung 47, 117–121.CrossRefPubMedGoogle Scholar
  11. Hanover, J.-W., 1992: Applications of terpene analysis in forest genetics. New Forests 6, 159–178.CrossRefGoogle Scholar
  12. Hughes, P.-R., 1974: Myrcene: a precursor of pheromones in Ips beetles. J. Insect Physiol. 20, 1271–1275.CrossRefGoogle Scholar
  13. Isman, B.-M., 2000: Plant essential oils for pest and disease management. Crop Protect. 19, 603–608.CrossRefGoogle Scholar
  14. Lang, K.-J., 1994: Abies alba Mill.: differentiation of provenances and provenance groups by the monoterpene patterns in the cortex resin of twigs. Biochem. System. Ecol. 22, 53–63.CrossRefGoogle Scholar
  15. Langenheim, J.-H., 1994: Higher plant terpenoids: a phytocen-tric overview of their ecological roles. J. Chem. Ecol. 20, 1223–1280.CrossRefPubMedGoogle Scholar
  16. Michelozzi, M., P. Capretti, R. Gagliardi, G. Boscherini, 1994: Monoterpene composition and resistance to Heterobasidion annosum in Abies alba Mill. In: M. Johansson, J. Stenlid (eds.): Proceedings of the 8th International Conference on Root and Butt Rots, Wik, Sweden and Haikko, Finland, August, 9-16, 1993, 146–151. Swedish University of Agricultural Sciences, Uppsala.Google Scholar
  17. Michelozzi, M., T.-L. White, A.-E. Squillace, W.-J. Lowe, 1995: Monoterpene composition and fusiform rust resistance in slash and loblolly pines. Can. J. For. Res. 25, 193–197.CrossRefGoogle Scholar
  18. Pasquier-Barre, F., C. Palasse, F. Goussard, M.-A. Auger-Rozenberg, C. Geri, 2001: Relationship of Scots pine clone characteristics and water stress to hatching and larval performance of the sawfly Diprion pini (Hymenoptera: Diprionidae). Environ. Entomol. 30, 1–6.CrossRefGoogle Scholar
  19. Rocchini, L.-A., B.-S. Lindgren, R.-G. Bennett, 2000: Effects of resin flow and monoterpene composition on susceptibility of lodgepole pine to attack by the Douglas-fir pitch moth, Synanthedon novaroensis (Lep., SESIIDAE). J. Appl. Entomol. 124, 87–92.CrossRefGoogle Scholar
  20. Schuck, H.-J., 1977: Die Wirkung von Monoterpenen auf das Mycelwachstum von Fomes annosus (Fr.) Cke. Eur. J. For. Path. 7, 374–384.CrossRefGoogle Scholar
  21. Thibault-Balesdent, M., C. Delatour, 1985: Variabilité du comportement de Heterobasidion annosum (Fr.) Bref. à trois monoterpènes. Eur. J. For. Path. 15, 301–307.CrossRefGoogle Scholar
  22. Tognetti, R., M. Michelozzi, M. Lauteri, E. Brugnoli, R. Giannini, 2000: Geographic variation in growth, carbon isotope discrimination and monoterpene composition in Pinus pinaster Ait. provenances. Can. J. For. Res. 30, 1682–1690.CrossRefGoogle Scholar
  23. Vernet, P., P.-H. Gouyon, G. Valdeyron, 1986: Genetic control of the oil content in Thymus vulgaris L: a case of polymorphism in a biosynthetic chain. Genetica 69, 227–231.CrossRefGoogle Scholar
  24. Zamponi, L., P. Capretti, B. Karlsson, M. Michelozzi, 2004: Relationship between terpene composition and susceptibility to Heterobasidion parviporum in Picea abies clones. In: M. Manka, P. Lakomy (eds.): Proceedings of the 11th International Conference on Root and Butt Rots, Poznan-Bialow-ieza, Poland, August, 16-22, 2004, 251–254. August Ciesz-kowski Agricultural University, Poznan.Google Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2006

Authors and Affiliations

  1. 1.Department of Agricultural BiotechnologyUniversity of FlorenceFirenzeItaly
  2. 2.Institute of Plant GeneticsNational Research CouncilSesto Fiorentino, FirenzeItaly

Personalised recommendations