Skip to main content
Log in

Population dynamics of Pythium aphanidermatum and response of tomato plants as affected by root-zone temperature

Die Populationsdynamik von Pythium aphanidermatum und die Reaktion der Tomate in Abhängigkeit von der Wurzelraumtemperatur

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Tomato plants were cultivated in a climate chamber in 12-L-containers with aerated nutrient solution at root-zone temperatures of 20, 25 and 30 °C. Half of the containers were inoculated with oospores of Pythium aphanidermatum. During cultivation, the density of oospores in a sample of the nutrient solution was estimated one, three and five weeks after inoculation, using a haemocytometer, and the numbers of propagules in the nutrient solution and in the roots were also measured, by incubating serial dilutions of samples in a selective liquid medium. Six weeks after inoculation, plants were harvested, and their root and shoot characteristics recorded. With increasing root-zone temperature, the population densities of P. aphanidermatum in the roots and in the nutrient solution increased, while the growth of inoculated plants was reduced. Five weeks after inoculation, the pathogen density at 30 °C was 3.0 · 107 propagules per g dry mass in the roots and 6.6 · 104 propagules l−1 in the nutrient solution. At 20 °C, these quantities were 1.1 · 106 and 1.9 · 104, respectively. A high pathogen density at 30 °C resulted in significantly reduced photosynthesis, transpiration and dry mass of all plant components. Nitrogen and potassium concentration in the leaves decreased, which indicated limitations in the nutrient uptake of severely infected roots. At 20 °C, however, plant characteristics other than transpiration were not affected. It was concluded that the tomato tolerates infections of P. aphani- dermatum at low root-zone temperatures.

Zusammenfassung

In einer Klimakammer wurden Tomatenpflanzen in 12-L-Gefäßen mit belüfteter Nährlösung bei Wurzelraumtemperaturen von 20, 25 und 30 °C angebaut. Die Hälfte der Gefäße wurde mit Oosporen von Pythium aphanidermatum inokuliert. Eine, drei und fünf Wochen nach Inokulation wurden die Dichte der Oosporen in Nährlösungsproben mit Hilfe eines Hämozytometers sowie die Keimdichten in Nährlösungs- und Wurzelproben durch Inkubation von Verdünnungsreihen mit einem selektiven Flussigmedium geschätzt. Sechs Wochen nach der Inokulation wurden die Pflanzen geerntet und die Spross- und Wurzelmerkmale ermittelt. Mit steigender Wurzelraumtemperatur erhohte sich die Populationsdichte von P. aphanidermatum sowohl in der Nahrlosung als auch in der Wurzel, wahrend sich das Wachstum der inokulierten Pflanzen verringerte. Bei 30 °C wurden funf Wochen nach der Inokulation 3,0 · 107 Keime je g Wurzeltrockenmasse und 6,6 · 104 Keime je l Nahrlosung gemessen, bei 20 °C dagegen nur 1,1 · 106 Keime g−1 bzw. 1,9 · 104 Keime l−1. Als Folge der hohen Pathogendichte waren bei 30 °C die Photosynthese, die Transpiration und die Trockenmasse aller Pflanzenteile signifikant verringert. Die Stickstoff- und Kaliumkonzentration in den Blattern verringerte sich, was als Indiz fur Beschrankungen in der Nährstoffaufnahme bei stark infizierten Wurzeln angesehen wird. Dagegen blieben bei 20 °C alle untersuchten Merkmale, mit Ausnahme der Transpiration, unbeeinflusst. Es wurde die Schlussfolgerung gezogen, dass die Tomate eine Infektion von P. aphanidermatum bei niedriger Wurzelraumtemperatur toleriert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Adams, P. B.: Pythium aphanidermatum oospore germination as affected by time, temperature, and pH. — Phytopathology 61, 1149–1150, 1971.

    Article  Google Scholar 

  • Agrios, G. N.: Plant pathology. — 4. ed. Academic Press, San Diego, 1997.

    Google Scholar 

  • Bolanos, J. A., T. C. Hsiao: Photosynthetic and respiratory characterisation of field-grown tomato. — Photosynthesis research 28, 21–32, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Bugbee, B., J. W. White: Tomato growth as affected by root-zone temperature and the addition of gibberellic acid and kinetin to nutrient solutions. — J. Am. Soc. Hortic. Sci. 109, 121–125, 1984.

    CAS  PubMed  Google Scholar 

  • Cochran, W. G.: Estimation of bacterial densities by means of the “most probable number”. — Biometrics 6, 105–116, 1950.

    Article  CAS  PubMed  Google Scholar 

  • De Kreij, C., W. Voogt, A. L. van den Bos, R. Baas: Nutrient solutions for the growth of tomato in closed systems (In Dutch). — Proefstation voor Bloemistrij en Glasgroente. Naaldwijk, The Netherlands. Brochure Vg 2, 21, 1997.

    Google Scholar 

  • Elad, Y., I. Chet: Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. — Phytopathology 77, 190–195, 1987.

    Article  Google Scholar 

  • Gold, S. E., M. E. Stanghellini: Effects of temperature on Pythium root-rot of spinach grown under hydroponic conditions. — Phytopathology 75, 333–337, 1985.

    Article  Google Scholar 

  • Grosch, R., D. Schwarz: The effects of an infection by Pythium aphanidermatum on root morphology of tomato. (In German) — In: Merbach, W. (eds.): 8. Borkheider Seminar on Ecophysiology of the Rhizosphere, pp. 65–72. B. G. Teubner Verlagsgesellschaft, Stuttgart, Leipzig, 1998.

    Google Scholar 

  • Grosch, R., H. Junge, B. Krebs, H. Bochow: Use of Bacillus subtilis as a biocontrol agent. Iii. Influence of Bacillus subtilis on fungal diseases and on yield in soilless culture. — J. Pl. Dis. Protect. 106, 568–580, 1999.

    Google Scholar 

  • Grote, D., C. Bucsi, R. Schmidt: Investigations on control of Pythium aphanidermatum in Nft- cultures of tomato and cucumber. — Gartenbauwissenschaft 57, 278–283, 1992.

    CAS  Google Scholar 

  • Grote, D., J. Gabler: Quantification of Phytophthora nicotianae in tomato plants. — J. Pl. Dis. Protect. 106, 445–454, 1999.

    Google Scholar 

  • Ho, L. C.: Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. — Ann. Rev. Pl. Physiol. Pl. Molec. Biol. 39, 355–378, 1988.

    Article  CAS  Google Scholar 

  • Hurd, R. G, A. P. Gay, A. C. Mountifield: Effect of partial flower removal on the relation between root, shoot and fruit-growth in the indeterminate tomato. — Ann. Applied Biology 93, 77–89, 1979.

    Article  Google Scholar 

  • Jolliet, O., B. J. Bailey: The effect of climate on tomato transpiration in greenhouses — measurements and models comparison. — Agr. Forest Meteorol. 58, 43–62, 1992.

    Article  Google Scholar 

  • Klaring, H.-P., R. Grosch, E. Nederhoff, D. Schwarz: A model approach to describe the effect of root pathogens on plant growth and yield. — Acta Hort. 548, 235–241, 2001.

    Article  Google Scholar 

  • Menzies, J. G., D. L. Ehret, S. Stan: Effect of inoculum density of Pythium aphanidermatum on the growth and yield of cucumber plants grown in recirculating nutrient film culture. — Can. J. Pl. Pathol. 18, 50–54, 1996.

    Article  Google Scholar 

  • Middleton, J. T.: The taxonomy, host range and geographic distribution of the genus Pythium. — Memiors of the Torrey Botanical Club 20, 1–171, 1943.

    Google Scholar 

  • Moulin, E., P. Lemanceau, C. Alabouvette: Pathogenicity of Pythium species on cucumber in peat- sand, rockwool and hydroponics. — Eur. J. Pl. Pathol. 100, 3–17, 1994.

    Article  Google Scholar 

  • Nelson, E. B.: Exudate molecules initiating fungal responses to seeds and roots. — Plant Soil 129, 61–73, 1991.

    Article  Google Scholar 

  • Novotelnova, N. C., K. A. Pistina: Root and around root rot of the cultured plants, caused by lower fungi (In Russian). — Nauka. St. Petersburg, 1978.

    Google Scholar 

  • Paulitz, T. C.: Population dynamics of biocontrol agents and pathogens in soils and rhizospheres. — Eur. J. Pl. Pathol. 106, 401–413, 2000.

    Article  Google Scholar 

  • Paulitz, T. C., R. R. Bélanger: Biological control in greenhouse systems. — Annu. Rev. Phytopathol. 39, 103–133, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Rafin, C., Y. Tirilly: Characteristics and pathogenicity of Pythium spp. associated with root rot of tomatoes in soilless culture in Brittany, France. — Pl. Pathol. 44, 779–785, 1995.

    Article  Google Scholar 

  • Raftoyannis, Y., M. W. Dick: Effects of inoculum density, plant age and temperature on disease severity caused by Pythiaceous fungi on several plants. — Phytoparasitica 30, 67–76, 2002.

    Article  Google Scholar 

  • Rasch, D., G. Herrendorfer, J. Bock, N. Victor, V. Guiard: Library of methods. Design and interpretation of experiments. Volume Ii (In German). — R. Oldenburg Verlag Munchen Wien, 1998.

    Google Scholar 

  • Runia, M. Th.: A review of possibilities for disinfection of recirculation water from soilless cultures. — Acta Hort. 382, 221–229, 1995.

    Article  Google Scholar 

  • Schwarz, D., H.-P. Klaring: Allometry to estimate leaf area of tomato. — J. Pl. Nutrition 24, 1291–1309, 2001.

    Article  CAS  Google Scholar 

  • Stanghellini, M. E., T. J. Burr: Germination in vivo of Pythium aphanidermatum oospores and sporangia. — Phytopathology 63, 1493–1496, 1973.

    Article  Google Scholar 

  • Stanghellini, M. E., S. L. Rasmussen: Hydroponics: a solution for zoosporic pathogens. — Pl. Dis. 78, 1129–1138, 1994.

    Article  Google Scholar 

  • Tan, E. S., A. Cornelisse, B. R. Buttery: Transpiration, stomatal conductance, and photosynthesis of tomato plants with various proportions of root-system supplied with water. — J. American Soc. Hort. Sci. 106, 147–151, 1981.

    Google Scholar 

  • Tedla, T., M. E. Stanghellini: Bacterial population dynamics and interactions with Pythium aphani- dermatum in intact rhizosphere soil. — Phytopathology 82, 652–656, 1992.

    Article  Google Scholar 

  • Tennant, D.: A test of modified line intersect method of estimating root length. — J. Ecology 98, 995–1001, 1975.

    Article  Google Scholar 

  • Utkhede, R. S., C. A. Levesque, D. Dinh: Pythium aphanidermatum root rot in hydroponically grown lettuce and the effect of chemical and biological agents on its control. — Can. J. Pl. Pathol. 22, 138–144, 2000.

    Article  Google Scholar 

  • Zhang, W., J. C. Tu: Effect of ultraviolet disinfection of hydroponic solutions on Pythium root rot and non-target bacteria. — Eur. J. Pl. Pathol. 106, 415–421, 2000.

    Article  Google Scholar 

  • Zheng, J., J. C. Sutton, H. Yu: Interactions among Pythium aphanidermatum, roots, root mucilage, and microbial agents in hydroponic cucumbers. — Can. J. Pl. Pathol. 22, 368–379, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-P. Kläring.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, G.G., Grote, D. & Kläring, HP. Population dynamics of Pythium aphanidermatum and response of tomato plants as affected by root-zone temperature. J Plant Dis Prot 111, 52–63 (2004). https://doi.org/10.1007/BF03356132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356132

Key words

Stichwörter

Navigation