Journal of Plant Diseases and Protection

, Volume 111, Issue 1, pp 30–38 | Cite as

Development of Pcr-based markers closely linked to rym5

  • Bettina Pellio
  • W. Friedt
  • A. Graner
  • F. Ordon


In the present study, two new dominant randomly amplified polymorphic Dna (Rapd) fragments and two amplified fragment length polymorphism (Aflp) markers linked to the recessive resistance gene rym5 which is effective against BaMMV, BaYMV, BaYMV-2 were identified. For initial primer screening, bulked segregant analysis was employed on resistant and susceptible doubled haploid (Dh) barley lines. By screening 1,200 decamer primers and 256 EcoRI/MseI Aflp primer combinations, new markers were developed which are co-segregating or very tightly linked (1.3 cM ) to rym5. As demonstrated in this study one of the most powerful and efficient ways to develop new markers is the use of the Aflp-technique. However, the availability of closely linked markers that allow a reliable and easy to handle detection of respective alleles is of special interest in marker-based selection procedures. Therefore, Rapd-marker Op-Af18h971 has to be considered being well suited for this approach and further experiments were conducted to convert it into a more specific marker. By elongating the respective primer at the 3’-end with selective nucleotides C and G, respectively, the specificity of the banding pattern was improved. Because of its close linkage to rym5, this marker offers the opportunity for marker-assisted selection in practical barley breeding programmes.

Key words

Hordeum vulgare barley yellow mosaic virus disease (BaMMV, BaYMV, BaYMV-2) Rapds Aflps molecular markers marker-assisted selection 

Entwicklung von Pcr-gestutzten Markern für das Resistenzgen rym5


In der vorliegenden Untersuchung konnten zwei neue dominante Randomly Amplified Polymorphic Dna (Rapd) Marker sowie zwei Amplified Fragment Length Polymorphism (Aflp) Marker identifiziert werden, die mit dem rezessiven Resistenzgen rym5 gekoppelt sind, welches Resistenz gegen BaMMV, BaYMV und BaYMV-2 bedingt. Mit Hilfe der ‘bulked segregant analysis’ wurden zunächst Primer auf Polymorphismen zwischen dem resistenten und anfälligen bulk (DNA-Ramsch) getestet. Durch die Untersuchung von 1200 Decamer-Primern und 256 EcoRI/MseI Aflp Primer-Kombinati- onen konnten Marker identifiziert werden, welche mit dem Gen cosegregieren bzw. sehr eng gekoppelt sind (1,3 cM). Im Rah men der Untersuchungen konnte die Leistungsfahigkeit und Effizienz der Aflp-Methode demonstriert werden. Von besonderem Interesse in markergestützten Selektions- verfahren ist jedoch die Verfugbarkeit von eng gekoppelten Markern, die eine zuverlässige sowie insbesondere eine schnelle und einfach zu handhabende Detektion erlauben. Zu diesem Zweck wurde der Rapd-Marker Op-Af18h971 in einen spezifischeren Marker umgewandelt. Eine Erhöhung der Spezifitat des Primers wurde durch selektive Basenverlangerung am 3’-Ende mit C bzw. G erreicht. Aufgrund der engen Kopplung mit rym5 steht damit der praktischen Gerstenzüchtung ein weiterer Marker zur Verfügung, der eine effektive markergestutzte Selektion erlaubt.


Hordeum vulgare Gelbmosaikvirose (BaMMV, BaYMV, BaYMV-2) Rapds Aflps molekulare Marker markergestützte Selektion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer, E., A. Graner: Basic and applied aspects of the genetic analysis of the ym4 virus resistance locus in barley. — Agronomie 15, 469–473, 1995.CrossRefGoogle Scholar
  2. Büschges, R., K. Hollrichter, R. Panstruga, G. Simons, M. Wolter, A. Frijiters, R. van Daelen, T. van der Lee, P. Diergaarde, J. Groendijk, S. Töpsch, P. Vos, F. Salamini, P. Schulze-Lefert: The barley Mlo gene: A novel control element of plant pathogen resistance. — Cell 88, 695–705, 1997.CrossRefPubMedGoogle Scholar
  3. Doyle, J. J., J. L. Doyle: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. — Phytochem. Bull. 19, 11–15, 1987.Google Scholar
  4. Friedt, W.: Mechanical transmission of soil-borne barley yellow mosaic virus. — Phytopath. Z. 106, 16–22, 1983.CrossRefGoogle Scholar
  5. Friedt, W., K. Werner, F. Ordon: Genetic progress as reflected in highly successful and productive modern barley cultivars. — Proc. 8th Int. Barley Genetics Symp. 22–27 Oct. 2000, Adelaide, Australia, Inv. papers, 271–279, 2000.Google Scholar
  6. Graner, A., E. Bauer: Rflp mapping of the ym4 virus resistance in barley. — Theor. appl. Genet. 86, 689–693, 1993.CrossRefPubMedGoogle Scholar
  7. Graner, A., S. Streng, A. Kellermann, A. Schiemann, E. Bauer, R. Waugh, B. Pellio, F. Ordon: Molecular mapping and genetic fine-structure of the rym5 locus encoding resistance to different strains of the barley yellow mosaic virus complex. — Theor. appl. Genet. 98, 285–290, 1999.CrossRefGoogle Scholar
  8. Haltermann, D., F. Zhou, F. Wie, R. P. Wise, P. Schulze-Lefert: The Mla6 coiled-coil, Nbs- Lrr protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Pl. J. 25, 335–348, 2001.CrossRefGoogle Scholar
  9. Huth, W.: Versuche zur Virusdiagnose und Resistenzträgererstellung in Gerste gegen Barley Yellow Mosaic Virus. — Vortr. Pflanzenzuchtg. 9, 107–120, 1985.Google Scholar
  10. Huth, W.: Ein weiterer Stamm des Barley yellow mosaic virus (BaYMV) gefunden. — Nachr. Bl. dt. Pfl. Schutzd. 41, 6–7, 1989.Google Scholar
  11. Konishi, T., T. Ban, Y. Iida, R. Yoshimi: Genetic analysis of disease resistance to all strains of BaYMV in a Chinese barley landrace, Mokusekko 3. — Theor. appl. Genet. 94, 871–877, 1997.CrossRefGoogle Scholar
  12. Kosambi, D. D.: The estimation of map distances from recombination values. — Ann. Eugen 12, 172–175, 1944.CrossRefGoogle Scholar
  13. Lahaye, T., K. Shirasu, P. Schulze-Lefert: Chromosome landing at the barley Rarl locus. — Mol. gen. Genet. 260, 92–101, 1998.CrossRefPubMedGoogle Scholar
  14. Lander, E. S., P. Green, J. Abrahamson, A. Barlow, M. J. Daly, S. E. Lincoln, L. Newburg: Mapmaker: An interactive computer package for construction of primary genetic linkage maps of experimental and natural populations. — Genomics 1, 174–181, 1987.CrossRefPubMedGoogle Scholar
  15. Muramatsu, M.: Breeding of malting barley which is resistant to barley yellow mosaic. — Proc. 3rd Int. Barley Genet. Symp. cl]Garching, Germany, Barley Genetics III, 476–485, 1976.Google Scholar
  16. Ordon, F., E. Bauer, W. Friedt, A. Graner: Marker-based selection for the ym4 BaMMV-resistance gene in barley using Rapds. — Agronomie. 15, 481–485, 1995.CrossRefGoogle Scholar
  17. Ordon, F., A. Schiemann, B. Pellio, V. Dauck, E. Bauer, S. Streng, W. Friedt, A. Graner: Application of molecular markers in breeding for resistance to the barley yellow mosaic virus complex. — J. Pl. Dis. Protect. 106, 256–264, 1999.Google Scholar
  18. Pellio, B., K. Werner, W. Friedt, A. Graner, F. Ordon: Resistance to the Barley yellow mosaic virus complex — from Mendelian genetics towards map-based cloning. — Czech J. Genet. Pl. Breed. 36, 84–87, 2000.Google Scholar
  19. Perovic, D., B. Pellio, S. Streng, F. Ordon, A. Graner: Construction of a Bac-contig surrounding the rym5 locus in barley. — Proc. 8th Int. Barley Genetics Symp. 22 — 27 Oct. 2000, Adelaide, Australia, 91–93, 2000.Google Scholar
  20. Schiemann, A., A. Graner, W. Friedt, F. Ordon: Specificity enhancement of a Rapd marker linked to the BaMMV/BaYMV resistance gene ym4 by randomly added bases. — Barley Genet. Newsl. 26, 63–65, 1997.Google Scholar
  21. Schiemann, A., V. Dauck, W. Friedt, S. Streng, S. Graner, F. Ordon: Establishment of a fluorescence-based Aflp technique and rapid marker detection for the resistance locus rym5. — Barley Genet. Newsl. 29, 5–7, 1999.Google Scholar
  22. Toyama, A., T. Kusaba: Transmission of soil-borne barley yellow mosaic virus. 2. Polymyxa graminis Led. as vector. — Ann. Phytopath. Soc. Japan 36, 223–229, 1970.CrossRefGoogle Scholar
  23. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Le, M. Hornes, A. Frijiters, J. Pot, J. Peleman, M. Kuiper, M. Zabeau: Aflp: a new technique for Dna fingerprinting. — Nucleic Acids Res. 23, 4407–4414, 1995.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Wei, F., K. Gobelman-Werner, S. M. Morroll, J. Kurth, L. Mao, R. Wing, D. Leister, P. Schulze-Lefert, R. P. Wise: The Mla (powdery mildew) resistance cluster is associated with three Nbs-Lrr gene families and suppressed recombination within a 240-kb Dna interval on chromosome 5S (1Hs) of barley. — Genetics 153, 1929–1948, 1999.PubMedPubMedCentralGoogle Scholar
  25. Werner, K., B. Pellio, F. Ordon, W. Friedt: Development of an Sts marker and Ssrs suitable for marker- assisted selection for the BaMMV resistance gene rym9 in barley. — Pl. Breed. 119, 517–519, 2000.CrossRefGoogle Scholar
  26. Zabeau, M., P. Vos: Selective restriction fragment amplification: a general method for Dna fingerprinting. — European patent application number 92402629.7, Publication number 0 534 858 A1, 1993.Google Scholar
  27. Zhou, F., J. Kurth, F. Wiè, C. Elliott, G. Vale, N. Yahiaoui, B. Keller, S. Sommerville, R. Wise, P. Schulze-Lefert: Cell-autonomous expression of barley Mlal confers race-specific resistance to the powdery mildew fungus via arl-independent signaling pathway. — Pl. Cell 13, 337–350, 2001.CrossRefGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2004

Authors and Affiliations

  • Bettina Pellio
    • 1
  • W. Friedt
    • 1
  • A. Graner
    • 2
  • F. Ordon
    • 1
  1. 1.Institute of Crop Science and Plant Breeding IJustus-Liebig-UniversityGiessenGermany
  2. 2.Institute of Plant Genetics and Crop Plant Research (Ipk)GaterslebenGermany

Personalised recommendations