Journal of Plant Diseases and Protection

, Volume 110, Issue 5, pp 449–460 | Cite as

Development of UV-induced Carbendazim-resistant mutants of Trichoderma harzianum for integrated control of damping-off disease of cotton caused by Rhizoctonia solani

  • J. Jayaraj
  • N. V. Radhakrishnan


The treatment of seeds with Trichoderma harzianum has been used successfully to control damping-off of cotton and other crops. However, T. harzianum is very sensitive to carbendazim which is often used as a seed-dressing fungicide for the control of internally seed-borne fungal pathogens. Hence in the present study, carbendazim-resistant mutants of T. harzianum were developed through UV-irradiation. These mutants grew well in PDA medium containing the carbendazim even at 100 μg/ml. Sustained production of cellulase and chitinase by these mutants in the presence of carbendazim in the growth medium was observed. These mutants established well in the rhizosphere of cotton plants. Seed treatment with carbendazim followed by application of carbendazim-resistant mutants of T. harzianum resulted in better plant stand, plant biomass and less damping-off disease caused by R. solani in both greenhouse and field conditions.

Key words

Carbendazim cotton damping-off integrated control Rhizoctonia solani Trichoderma harzianum mutants 

Entwicklung von UV-induzierten Carbendazim-resistenten Mutanten von Trichoderma harzianum zur integrierten Bekämpfung durch die durch Rhizoctonia solani verursachte Umfallkrankheit an Baumwolle


Die Behandlung von Saatgut mit Trichoderma harzianum hat bei der Bekämpfung der Umfallkrankheit an Baumwolle und anderen Kulturpflanzenarten zu guten Erfolgen geführt. T. harzianum ist jedoch sehr empfindlich gegenüber dem Fungizid Carbendazim, welches häufig zur Beizung von Saatgut zur Bekämpfung von samenbürtigen pilzlichen Krankheitserregern eingesetzt wird. In der vorliegenden Arbeit wird die Erzeugung von Carbendazim-resistenten Mutanten von T. harzianum durch UV-Bestrahlung beschrieben. Diese Mutanten wuchsen gut auf PDA, dem 100 μg/ml Carbendazim zugesetzt waren. In diesem Medium wurde auch eine nachhaltige Bildung von Zellulase und Chitinase beobachtet. Diese Mutanten etablierten sich gut in der Rhizosphäre von Baumwollpflanzen. Saatgutbehandlung mit Carbendazim und nachfolgende Applikation von Carbendazim-resistenten Mutanten von T. harzianum führten unter Gewächshaus- und Freilandbedingungen zu einem besseren Pflanzenbestand, zu einer größeren Biomasse sowie zu einem verminderten Befall mit der durch R. solani verursachten Umfallkrankheit.


Carbendazim Baumwolle Umfallkrankheit integrierte Bekämpfung Rhizoctonia solani Trichoderma harzianum Mutanten 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abd-El Moity, T. H., G. C. Papavizas, J. A. Lewis: Induction of new isolates of Trichoderma harzianum tolerant to fungicides and their experimental use for control of white rot of onion. — Phytopathology 72, 396–400, 1982.CrossRefGoogle Scholar
  2. Ahmad, J. S., R. Baker: Rhizosphere competence of Trichoderma harzianum. — Phytopathology 77, 182–189, 1987.CrossRefGoogle Scholar
  3. Alagarsamy, G., K. Sivaprakasam: Effect of antagonists in combination with carbendazim against Macrophomina phaseolina infection in cowpea. — J. Biol. Control 2, 123–125, 1988.Google Scholar
  4. Bell, A.: Cotton protection practices in the USA and the world. — In: Kohel, R. J., C. F., Lewis (eds.): Cotton, pp. 288–309. American Society of Agronomy Monograph, Sect. B: Diseases, American Society for Agronomy, Madison, USA, 1984.Google Scholar
  5. Brian, P. W., G. H. Hemming: Gliotoxin, a fungistatic metabolic product of by Trichoderma viride. — Ann. appl. Biol. 32, 214–220, 1945.CrossRefPubMedGoogle Scholar
  6. Brown, E. A., S. M. Mccarter: Effect of seedling disease caused by Rhizoctonia solani on subsequent growth and yield of cotton. — Phytopathology 66, 111–115, 1976.CrossRefGoogle Scholar
  7. Chet, I.: Trichoderma-application, mode of action and potential as a biocontrol agent of soilborne plant pathogens. — In: Chet, I. (ed.): Innovative approaches to plant disease control, pp. 137–160. John Wiley, New York, 1987.Google Scholar
  8. Chet, I., Y. Elad, A. Kalfon, Y. Hadar, J. Katan: Integrated control of soilborne and bulb borne pathogens of Iris. — Phytoparasitica 10, 229–236, 1982.CrossRefGoogle Scholar
  9. Cliquet, S., R. J. Scheffer: Biological control of damping-off caused by Pythium ultimum and Rhizoctonia solani, using Trichoderma spp. applied as industrial film coatings on seeds: biological control of damping-off. — Eur. J. Pl. Pathol. 102, 247–255, 1996.CrossRefGoogle Scholar
  10. Cook, R. J., K. F. Baker: The nature and practise of biological control of plant pathogens. — APS Press. St. Paul, Minn., 1983.Google Scholar
  11. Elad, Y., I. Chet: Improved selective media for isolation of Trichoderma spp. or Fusarium spp. — Phytoparasitica 11, 55–58, 1983.CrossRefGoogle Scholar
  12. Figueras-Roca, M., C. Cristani, G. Vannacci: Sensitivity of Trichoderma isolates and selected resistant mutants to DMI fungicides. — Crop Protect. 15, 615–620, 1996.CrossRefGoogle Scholar
  13. Gopalakrishnan, B., S. Muthukrishnan, K. J. Krammer: Baculovirus-mediated expression of a Manduca sexta chitinase gene: Properties of the recombinant protein. — Insect Biochem. Mol. Biol. 25, 255–265, 1995.CrossRefGoogle Scholar
  14. Hadar, E., Y. Elad, S. Ovadia, Y. Hadar, I. Chet: Biological and chemical control of Rhizoctonia solani in Carnation. — Phytoparasitica 7, 55–59, 1979.Google Scholar
  15. Howell, C. R.: Cotton seedling preemergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp. — Phytopathology 92, 177–180, 2002.CrossRefPubMedGoogle Scholar
  16. Howell, C. R., J. E. De Vay, R. H. Garber, W. E. Batson: Field control of cotton seedling diseases with Trichoderma virens in combination with fungicide seed treatments. — J. Cotton Sci. 1, 15–20, 1997.Google Scholar
  17. Jayaraj, J., N. V. Radhakrishnan: Effect of soil drenching of carbendazim on the survival and competitive saprophytic ability of Trichoderma harzianum. — Pl. Dis. Res. 12, 65–67, 1997.Google Scholar
  18. Jayaraj, J., N. V. Radhakrishnan: Biotechnology — A tool for improving the biocontrol potential of Trichoderma. — National Conference on Recent Trends in Biotechnology and Microbial Research, JJ. College of Arts and Science, Pudukkottai, India, 20–21 May, p. 40 (Abstr.), 1998.Google Scholar
  19. Lewis, J. A., R. P. Larkin, D. L. Rogers: A formulation of Trichoderma and Gliocladium to reduce damping-off caused by Rhizoctonia solani and saprophytic growth of the pathogen in soil-less mix. — Pl. Dis. 82, 501–506, 1998.CrossRefGoogle Scholar
  20. Lewis, J. A., R. D. Lumsden: Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. — Crop Protect. 20, 49–56, 2001.CrossRefGoogle Scholar
  21. Lifshitz, R., S. Lifshitz, R. Baker: Decrease in incidence of Rhizoctonia pre-emergence damping-off by use of integrated chemical and biological controls. — Pl. Dis. 69, 431–434, 1985.CrossRefGoogle Scholar
  22. Manczinger, L., Z. Antal, L. Kredics: Ecophysiology and breeding of mycoparasitic Trichoderma strains (a review). — Acta Microbiol. Immunol. Hung. 49, 1–14, 2002.CrossRefPubMedGoogle Scholar
  23. Mandeel, Q.: Integration of biological and chemical control of Fusarium wilt of radish. — Z. PflKrankh. PflSch. 103, 610–619, 1996.Google Scholar
  24. Mukherjee, P. K., M. P. Haware, K. Raghu: Induction and evaluation of benomyl-tolerant mutants of Trichoderma viride for biological control of Botrytis grey mould of chick pea. — Indian Phytopath. 50, 485–489, 1997.Google Scholar
  25. Mukherjee, P. K., P. D. Sherkhane, N. B. K. Murthy: Induction of stable benomyl-tolerant phenotypic mutants of Trichoderma pseudokoningii MTCC 3011, and their evaluation for antago-nistic and biocontrol potential. — Indian J. Exp. Biol. 37, 710–712, 1999.PubMedGoogle Scholar
  26. Papavizas, G. C.: Genetic manipulation to improve the effectiveness of biocontrol fungi for plant disease control. — In: Chet, I. (ed.): Innovative approaches to plant disease control, pp. 193–212. John Wiley, New York, 1987.Google Scholar
  27. Papavizas, G. C., J. A. Lewis: Physiological and biocontrol characteristics of stable mutants of Trichoderma viride resistant to MBC fungicides. — Phytopathology 73, 407–411, 1983.CrossRefGoogle Scholar
  28. Rajappan, K.: Induction of mutants in Trichoderma viride by UV-irradiation. — Pl. Dis. Res. 12, 1–5, 1997.Google Scholar
  29. Sadasivam, S., A. Manickam: Biochemical methods for agricultural sciences, pp. 125–126. — Wiley Eastern, New Delhi, 1992Google Scholar
  30. SAS INSTITUTE: SAS System Version 7 for Windows. — SAS Institute, Cary, NC. 1998.Google Scholar
  31. Viji, G., U. I. Baby, K. Manibushan Rao: Induction of fungicidal resistance in Trichoderma spp. through UV irradiation. — Indian J. Microbiol. 33, 125–129, 1993.Google Scholar
  32. Vyas, S. C.: Integrated, biological and chemical control of dry root rot in soybean. — Indian J. Mycol. Pl. Pathol. 24, 132–136, 1994.Google Scholar
  33. Vyas, S. C., V. N. Shrof, S. P. Raychoudhuri: Fungicides in plant disease control. Problem and progress. — International J. Trop. Pl. Dis. 8, 21–50, 1990.Google Scholar
  34. Zaki, K., I. J. Misagi, A. Heydari: Control of cotton seedling damping-off in the field by Burkholderia (Pseudomonas) cepacia. — Pl. Dis. 82, 291–293, 1998.CrossRefGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2003

Authors and Affiliations

  1. 1.Department of Plant PathologyAnnamalai UniversityAnnamalai nagarIndia
  2. 2.Department of Plant Pathology, Regional Agricultural Research StationKerala Agricultural UniversityAmbalavayalIndia

Personalised recommendations