Skip to main content
Log in

On Line Oxygen Activity Measurements to Determine Optimal Graphite form During Compacted Graphite Iron Production

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Lately, the present authors published a study where oxygen activities were measured using a commercial sensor, which became recently available. In ductile cast iron melts with ferritic and pearlitic structure, optimal properties occur for a well-defined oxygen activity. Castings poured in these circumstances present maximal nodularity, elongation and ferrite content combined with lowest hardness. Additionally, the first results for compacted graphite cast iron were published. The present contribution examines in much more detail the effect of sulfur and oxygen activity on several phenomena important during production of compacted graphite cast iron. These phenomena are the limit for which mechanical properties as defined in ISO16112 are met, the transition from compacted graphite to lamellar graphite and the point at which 20 percent nodularity occurs.

Taking into account that the oxygen activity measurement is obtained in about 12 seconds, the sensor seems to be very promising for compacted iron process control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weiss G., Kaiser R.W., “Hochleistungsmotoren nur mit Gusseisen!,“ Giesserei-Rundschau, vol. 49, pp 70–71 (2002).

    Google Scholar 

  2. Röhrig K., “Gießtechnik im Motorenbau — Anforderungen der Automobilindustrie”, Giesserei-Praxis, no. 5, pp 191–197, no. 6, pp 255–262 (2003).

  3. Evans E.R., Lalich M.J., “Compacted Graphite Cast Irons and Their Production by a Single Alloy Addition,” AFS Transactions, vol. 84, pp 215–220 (1976).

    Google Scholar 

  4. Dawson S., Schroeder T., “Practical Applications for Compacted Graphite Iron,” AFS Transactions, vol. 112, Paper 04-047, pp 1–9 (2004).

    Google Scholar 

  5. Steller I., “Das neue VDG-Merkblatt W 50 Gußeisen mit Vermiculargraphit,” konstruieren + giessen, vol. 28, no. 2, pp 22–24 (2003).

    Google Scholar 

  6. Sillen R. V., “Process Control Methods for Production of Castings in Compacted Graphite Iron”, 66th World Foundry Congress Istanbul, pp 1017–1030 (2004).

  7. Mampaey F., “Acoustic Resonance Analysis for Examining the Graphite Shape in Cast Iron,” AFS Transactions, vol. 115, paper no. 07-129 (2007).

  8. Mampaey F., Habets D., Seutens F. and Plessers J., “The Use of Oxygen Activity Measurement to Determine Optimal Properties of Ductile Iron During Production,” International Foundry Research / Giessereiforschung, vol. 60, no. 1, pp 2–19 (2008).

    Google Scholar 

  9. Mampaey F., Habets D., Plessers J., Seutens F., “The Use of Oxygen Activity Measurements to Determine Compacted Graphite Structure,” 2008 Keith Millis Symposium on Ductile Cast Iron, American Foundry Society, pp 116–127 (2008).

  10. Speer M.C., Parlee N.A.D., “Desulfurization Reactions of Magnesium Vapor in Liquid Iron Alloys,” Cast Metals Res. Journal, vol. 8, no. 3, pp 122–128 (1972).

    Google Scholar 

  11. Fray D.J., “The Use of Solid Electrolytes in the Determination of Activities and the Development of Sensors,” Metallurgical and Materials Transactions B, vol. 34B, pp 589–594 (2003).

    Article  Google Scholar 

  12. HEN, Heraeus Electro-Nite Celox-Foundry, CF 10700692.

  13. Mampaey F., “Image Analysis of Graphite Particles by a Mathematical Description of the Particle Contour,” AFS Transactions, vol 113, paper no 05-155 (2005).

  14. Riposan I., Datcu M., Chisamera M., Manolescu E., “Control of the Degree of Graphite Compactness in Vermicular and Coral Graphite Cast Irons with the Help of a Romanian System of Automatic Digital Image Analysis, “FOCOMP’86, pp 269–278, Foundry Res. Inst. Poland (1986).

  15. Stefanescu D.M., Hummer R., Nechtelberger E., “Compacted Graphite Irons,” in Metals Handbook, 9th Ed., Volume 15 Casting, p 667, ASM Int. (1988).

    Google Scholar 

  16. ISO/DIS 945-1 “Designation of Microstructure of Cast Irons — Part 1: Graphite Classification by Visual Analysis”.

  17. Ellis J. F., Donoho C.K., “Magnesium Content and Graphite Forms in Cast Iron,” AFS Transactions, vol. 66, pp 203–209 (1958).

    Google Scholar 

  18. Sofue M., Okada S., Sasaki T., “High-Quality Ductile Cast Iron With Improved Fatigue Strength,” AFS Transactions, vol. 86, pp 173–182 (1978).

    Google Scholar 

  19. Itofuji H., “The Influence of Free Magnesium on Some Properties in Spheroidal Graphite Irons,” Int. J. Cast Metals Res., vol. 12, pp 179–187 (1999).

    Google Scholar 

  20. Sokoljuk J., Razdobarin I.G., Kornienko L.G., Basenko L.K., Litejnoe Proizvodstvo (1990) no. 3 pp 7–8 as cited in Gießereitechnik, vol. 36, no. 9, p 288 (1990).

    Google Scholar 

  21. Hasse S., “Die Wirkung von Spurenelementen in Gußeisen mit Kugelgraphit,” Giesserei-Praxis, no. 15/16, pp 271–278 (1995).

  22. Döpp R., Koerfer G., Kuhn G., “Herstellung und Eigenschaften von dickwandigen Gußteilen aus Gußeisen mit Kugelgraphit im Flüssigverbund zwischen Hochofen und Induktionsofen,” Giesserei, vol. 79, no. 4, pp 144–147 (1992).

    Google Scholar 

  23. Kusakawa T., Xu X., Okimoto S., “Effects of Oxygen in Cast Iron during Melting and Solidification Process,” Report of the Castings Research Laboratory, Waseda University, no. 38, pp 33–39 (1988).

  24. Hummer R., “Die Sauerstoffaktivität, ein Qualitätsmerkmal von Gusseisen — ein Überblick mit Hinweisen auf ein neues Anwendungsgebiet,” Giesserei-Rundschau, vol. 50, no. 9/10, pp 220–226 (2003).

    Google Scholar 

  25. ISO 16112 “Compacted (Vermicular) Graphite Irons — Classification,” Annex B, 2006.

  26. Riposan I., Chisamera M., Stan S., Constantin V., Adam N., Barstow M., “Beneficial Remnant Effect of High Purity Iron in Industrial Production of Ductile Iron,” AFS Transactions, vol. 114, pp 657–666 (2006).

    Google Scholar 

  27. Trudel A., Gagné M., Lavallée F., “Counteracting the Effect of Steel Scrap Residuals in Ductile Iron Castings,“ AFS Transactions, vol. 104, pp 123–132 (1996).

    Google Scholar 

  28. Elbel T., Senberger J., Zadera A., Kocian L., “Study of the Occurrence and Suppression of Metal Reoxidation in Ferrous Castings,” World Foundry Congress 2006 Paper 94.

  29. Mampaey F., Beghyn K., “Oxygen Activity in Cast Iron Measured in Induction Furnace at Variable Temperature,” AFS Transactions, vol. 114, pp 637–656 (2006).

    Google Scholar 

  30. Labreque C., Gagné M., Planque E., “Effect of Charge Materials on Slag Formation in Ductile Iron Melts”, Keith Millis World Symposium on Ductile Iron, American Foundry Soc., pp 41–48 (2003).

  31. Weis W., “Jahresübersicht Gußeisen mit Lamellengraphit (21.Folge)”, Giesserei, vol. 71, no. 6, pp 252–257 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mampaey, F., Habets, D., Plessers, J. et al. On Line Oxygen Activity Measurements to Determine Optimal Graphite form During Compacted Graphite Iron Production. Inter Metalcast 4, 25–43 (2010). https://doi.org/10.1007/BF03355464

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03355464

Keywords

Navigation