International Journal of Metalcasting

, Volume 3, Issue 2, pp 55–65 | Cite as

Optimising of Moulding Parameters for Green Sand Compaction by Computer Simulation and a New Compaction Measuring Device

  • J. Bast
  • A. Kadauw
  • A. Malaschkin


The quality of castings produced by green sand moulds depends strongly on the compaction of the moulding sand. The moulding process parameters of green sand directly affect casting quality, energy consumption and cycle time. Unnecessary holding periods during particular compaction process steps increase the cycle time and also cause higher energy consumption. The determination of optimal compaction parameters is often carried out by trial-and-error which is expensive and time consuming. To improve this situation, the process of compaction is calculated using a mathematical model and the finite element method (FEM). For the validation of the calculated and experimental data the computer tomography method was used. The effect of different moulding parameters was examined using a new sensor. During mould compaction the sand density in different regions of the mould was recorded over time. These results allow foundry personnel to monitor, adjust and optimise the moulding process.


green sand moulding compaction sensor numerical modelling computer tomography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flemming, E., Tilch W., Formstoffe und Formverfahren, p. 448, Deutscher Verlag für Grundstoffindustrie (1993).Google Scholar
  2. 2.
    Bast, J., Malaschkin, A., Kadauw, A., Gießerei 2005, 8, p. 23–27 (2005).Google Scholar
  3. 3.
    Tilch, W., Gießerei-Praxis 2004, 2, 53–62 (2004).Google Scholar
  4. 4.
    Kadauw, A., Bast, J., Aydogmus, T., Statusbericht des Instituts für Geotechnik der TU Bergakademie Freiberg, 2006, p. 259–267 (2006).Google Scholar
  5. 5.
    Zhou, F., No. 31, RWTH Aachen, 1997, p. 244 (1997).Google Scholar
  6. 6.
    Brinkgreve, R., Plaxis, B., “Plaxis catalogue version 7, Part 3: Material Models Manual,” 1-1–4-11, 1998 Netherlands (1998).Google Scholar
  7. 7.
    Makino, H., Maeda, Y., Nomura, H., “CIATF Technical Forum Düsseldorf, 1999,” p. 144–151 (1999).Google Scholar
  8. 8.
    Cundall, P. A., “Proceedings of the Symposium of the International Society of Rock Mechanics,” France, 1971 Paper II-8 (1971).Google Scholar
  9. 9.
    Yifei, Z., Junjiao, W., Transactions of the American Foundry Society 2003, 3, 1–4 (2003).Google Scholar
  10. 10.
    Kadauw, A., Bast, J., Fiedler, D., Betchvaia, I., Saewert, H.C., “Computer Simulation of Squeeze Moulding and Validation of Results using Industrial Computer Tomography (ICT),” Archives of Metallurgy and Materials, ISSN 1733-490, Vol. 52, 3/2007 Polen (2007).Google Scholar
  11. 11.
    DISA Industrie AG; Bast J. and Malaschkin, Andrej, “Sensor zur Messung der von der Sandbewegung hervorgerufenen Kraft während der Verdichtung tongebundener Formstoffe bei der Herstellung von Gießformen,” Europäisches Patentamt, 22.02.2003, Aktenzeichen: 03706557.0-2122-EP0301820 (2003).Google Scholar

Copyright information

© American Foundry Society 2009

Authors and Affiliations

  • J. Bast
    • 1
  • A. Kadauw
    • 1
  • A. Malaschkin
    • 2
  1. 1.Technical University Bergakademie FreibergFreiberg Sa.Germany
  2. 2.Georg Fischer AG LeipzigGermany

Personalised recommendations