Advertisement

Kognitionswissenschaft

, Volume 7, Issue 2, pp 58–67 | Cite as

Piktorielle Repräsentationen als unterbestimmte räumliche Modelle

  • Christopher Habel
Fortsetzung des Themenheftes Räumliche mentale Modelle
  • 10 Downloads

Zusammenfassung

In der Diskussion über die Vor- und Nachteile piktorieller Repräsentationen nimmt das Problem der Bestimmtheit eine zentrale Rolle ein: Während propositionale Repräsentationen unterbestimmt sein können, d. h. Details des Repräsentierten einfach unerwähnt lassen können, scheint es im Wesen piktorieller Repräsentationen zu liegen, daß sie vollständig bestimmt und somit zu Detaillierungen verpflichtet sind. Im Gegensatz zu dieser Ansicht, die u. a. Dennett Pylyshyn und Iorger vertreten, wird hier ein System variabler Verpflichtungen vorgestellt: Piktorielle Repräsentationen besitzen Interpretations- und Verpflichtungsalternativen, die durch Annotationen der Repräsentation ermöglicht werden. Die hier vorgeschlagenen Annotationen sind Verweise auf Axiomatisierungen geometrischer Systeme, die unter einer kognitionswissenschaftlichen Perspektive als Verpflichtungssysteme aufgefaßt werden können.

Pictorial Representations as Underdetermined Spatial Models

Abstract

Central for the discussion about the pros and cons of pictorial representations is the indeterminacy problem. Whereas propositional representations can be underdetermined, it is a widespread opinion that pictorial representations are completely determined and committed to details. In contrast to this view, which is held — for example by Dennett, Pylyshyn and Iorger — in the present paper a variable system of commitments is proposed: Users of pictorial representations have alternatives with respect to interpretations and commitments since there are implicit annotations to these representations. The annotations refer to axiomatized geometric systems, which — from a cognitive point of view — can be seen as systems of commitments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Barwise, J. & Etchemendy, J. (1995). Heterogeneous logic. In J. Glasgow, H. Narayanan & B. Chandrasekaran (eds.): Diagrammatic Reasoning: Cognitive and Computational Perspectives. (pp. 211–234). Cambridge, MA: MIT-Press.Google Scholar
  2. Block, N. (1981). Introduction: What is the Issue? In N. Block (ed.), Imagery (pp. 1–18). Cambridge, MA: MIT-Press.Google Scholar
  3. Dennett, D.C. (1969). The nature of images and the introspective trap. In D.C. Dennett, Content and Consciousness (pp. 132–141). London: Routledge & Kegan Paul.Google Scholar
  4. Eschenbach, C.; Habel, Ch.; Kulik, L. & Leßmöllmann, A. (im Ersch.). Shape Nouns and Shape Concepts: A Geometry for ‚Corner’. In C. Freksa, Ch. Habel & K. Wender. (eds.)Spatial Cognition. Berlin: Springer-Verlag.Google Scholar
  5. Eschenbach, C.; Habel, Ch. & Leßmöllmann, A. (1997). The intepretation of complex spatial relations by integrating frames of reference. In Proceedings of the AAAI Workshop ‚„Language and Space” (pp. 45–56). In Patrick Oliver, (ed.) 14th National Conference on Artificial Intelligenc (AAAI-97), Providence, RI. (July 27-28, 1997)Google Scholar
  6. Eschenbach, C. & Kulik, L. (1997). An axiomatic approach to the spatial relations underlying ‚left‘—’right’ and ‚in front of‘—rsbehind’. In G. Brewka, C. Habel & B. Nebel (eds.), KI-97 — Advances in Artificial Intelligence 207–218. Berlin: Springer-VerlagGoogle Scholar
  7. Freksa, C. (1992). Temporal reasoning based on semi-intervals. Artificial Intelligence, 54 199–227.MathSciNetCrossRefGoogle Scholar
  8. Glasgow, J. & Papadias, D. (1992). Computational imagery. Cognitive Science, 16, 355–394CrossRefGoogle Scholar
  9. Habel, Ch. (1987). Cognitive Linguistics: The Processing of Spatial Concepts. T.A. Informations -ATALA (Association pour le Traitement Automatique des Langues), 28, 21–56Google Scholar
  10. Habel, Ch. & Eschenbach, C. (1995). Abstrakte Räumlichkeit in der Kognition. Kognitionswissenschaft, 4, 171–176.CrossRefGoogle Scholar
  11. Habel, Ch. & Eschenbach, C. (1997). Abstract structures in spatial cognition. In C. Freksa, M. Jantzen & R. Valk (eds.). Foundations of Computer Science — Potential — Theory — Cognition. (pp. 369–378). Berlin: Springer-Verlag.Google Scholar
  12. Habel, Ch.; Pribbenow, S. & Simmons, G. (1995). Partonomies and Depictions: A Hybrid Approach. In J. Glasgow, H. Narayanan & B. Chandrasekaran (eds.): Diagrammatic Reasoning: Cognitive and Computational Perspectives (pp. 627–653). Cambridge, MA: MIT-Press.Google Scholar
  13. Haugeland, J. (1987). An overview of the frame problem. In Pylyshyn, Zenon (ed.) The robot’s dilemma: The frame problem in artificial intelligence (pp. 77–93). Norwood, NJ: Ablex.Google Scholar
  14. Hilbert, D. (1899; 8 Aufl. 1956). Grundlagen der Geometrie. Stuttgart: TeubnerGoogle Scholar
  15. Ioerger, T.R. (1994). The manipulation of images to handle indeterminacy in spatial reasoning. Cognitive Science 18, 551–593.CrossRefGoogle Scholar
  16. Jackendoff, R. (1996). The architecture of the linguistic-spatial interface. In P. Bloom; M.A. Peterson; L. Nadel & M.F. Garrett (eds.), Language and Space (pp. 1–30). Cambridge, MA: MIT Press.Google Scholar
  17. Johnson-Laird, P.N. & Byrne, R.M.J. (1991). Deduction. Hillsdale NJ.: Lawrence Erlbaum.Google Scholar
  18. Klein, F. (1893). Vergleichende Betrachtungen über neuere geometrische Forschungen. Mathematische Annalen 43. 63–100. (Neudruck (1995) Ostwalds Klassiker der exakten Wissenschaften. Thun und Frankfurt am Main: Verlag Harri Deutsch.MATHMathSciNetCrossRefGoogle Scholar
  19. Kosslyn, S.M. (1980). Image and Mind. Cambridge, MA.: Harvard UP.Google Scholar
  20. Kosslyn, S.M. (1994). Image and Brain. Cambridge, MA.: MITPress.Google Scholar
  21. Landau, B. & Jackendoff, R. (1993). „What” and „where” in spatial language and spatial cognition. Behavioral and Brain Sciences, 16, 217–238, 255–266.CrossRefGoogle Scholar
  22. Levinson, S. C. (1996). Frames of reference and Malyneux’s question: Crosslinguistic evidence. In P. Bloom; M. A. Peterson; L. Nadel & M. F. Garrett (eds.), Language and space (pp. 109–169). Cambridge, MA: MIT-Press.Google Scholar
  23. Myers, K. & Konolige, K. (1995). Reasoning with analogical representations. In J. Glasgow, H. Narayanan & B. Chandrasekaran (eds.): Diagrammatic Reasoning: Cognitive and Computational Perspectives (pp. 273–301). Cambridge, MA: MIT-Press.Google Scholar
  24. Palmer, S.E. (1978). Fundamental aspects of cognitive representations. In E. Rosch & B. Lloyd (eds.), Cognition and categorization (pp. 259–303). Hillsdale, NJ.: Lawrence Erlbaum.Google Scholar
  25. Pylyshyn, Z. (1973). What the mind’s eye tells the mind’s brain. Psychological Bulletin 80, 1–24.CrossRefGoogle Scholar
  26. Raiman, Olivier (1991). Order of magnitude reasoning. Artificial Intelligence 51, 11–38.CrossRefGoogle Scholar
  27. Tarski, A. (1959). What is elementary geometry? In L. Henkin, P. Suppes & A. Tarski (eds), The axiomatic method, with special reference to geometry and physics (pp. 16–29) Amsterdam: North-Holland.Google Scholar

Copyright information

© Springer Verlag 1998

Authors and Affiliations

  1. 1.FB Informatik (AB WSV) und Graduiertenkolleg KognitionswissenschaftUniversität HamburgHamburgDeutschland

Personalised recommendations