Bulletin of Mathematical Biology

, Volume 57, Issue 6, pp 865–881 | Cite as

Electrotonic coupling between two CA3 hippocampal pyramidal neurons: A distributed cable model with somatic gap-junction

  • R. R. Poznanski
  • W. G. Gibson
  • M. R. Bennett


Pyramidal Neuron Synaptic Input Cable Model Junctional Resistance Alpha Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, M. R., W. G. Gibson and R. R. Poznanski. 1993. Extracellular current flow and potential during quantal transmission from varicosities in a smooth muscle syncytium. Phil. Trans. Roy. Soc. Land. B342, 89–99.CrossRefGoogle Scholar
  2. Bennett, M. R., W. G. Gibson and J. Robinson. 1994. Dynamics of the CA3 pyramidal neuron autoassociative memory network of the hippocampus. Phil. Trans. Roy. Soc. Land. B343, 167–187.CrossRefGoogle Scholar
  3. Berry, M.S. and V. W. Pentreath. 1977. The integrative properties of electrotonic synapses. Camp. Biochem. Physiol. 57A, 289–295.CrossRefGoogle Scholar
  4. Brown, T. H., R. A. Fricke and D. H. Perkel. 1981. Passive electrical constants in three classes of hippocampal neurons. J. Neurophysiol. 46, 812–827.Google Scholar
  5. Dudek, F. E. and R. D. Traub. 1989. Local synaptic and electrical interactions in hippocampus: experimental data and computer simulations. In Neural Models of Plasticity, J. H. Byrne and W. 0. Berry (Eds), pp. 378–402. San Diego: Academic Press.CrossRefGoogle Scholar
  6. Dudek, F. E., R. D. Andrew, B. A. MacVicar, R. W. Snow and C. P. Taylor. 1983. Recent evidence for and possible significance of gap junctions and electrotonic synapses in the mammalian brain. In Basic Mechanisms of Neuronal Hyperexcitability, H. H. Jasper and N. M. van Gelder (Eds), pp. 31–73. Liss: New York.Google Scholar
  7. Durand, D. 1984. The somatic shunt cable model for neurons. Biophys. J. 46, 645–653.CrossRefGoogle Scholar
  8. Fu, P., B. L. Bardakjian and P. L. Carlen. 1992. Ethanol uncouples dentate granule neurons by increasing junctional resistance: a multineuronal system model approach. Neuroscience 51, 47–54.CrossRefGoogle Scholar
  9. Getting, P. A. 1974. Modifica tion of neuron properties by electrotonic synapses. I. Input resistance time constant, and integration. J. Neurophysiol. 37, 846–857.Google Scholar
  10. Jack, J. J. B., D. Noble and R. W. Tsien. 1975. Electric Current Flow in Excitable Cells. Oxford: Clarendon Press.Google Scholar
  11. Johnston, D. 1981. Passive cable properties of hippocampal CA3 pyramidal neurons. Cell. Mol. Neurobiol. 1, 41–55.CrossRefGoogle Scholar
  12. Johnston, D. and T. H. Brown. 1983. Interpretation of voltage clamp measurements in hippocampal neurons. J. Neurophysiol. 50, 464–486.Google Scholar
  13. MacVicar, B. A. and F. E. Dudek. 1980. Local synaptic circuits in rat hippocampus: interactions between pyramidal cells. Brain Res. 184, 220–223.CrossRefGoogle Scholar
  14. Mac Vicar, B. A. and F. E. Dudek. 1980. Dye-coupling between CA3 pyramidal cells in slices of rat hippocampus. Brain Res. 196, 494–497.CrossRefGoogle Scholar
  15. Mac Vicar, B. A. and F. E. Dudek. 1981. Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices. Science 213, 782–785.CrossRefGoogle Scholar
  16. Mac Vicar, B. A., N. Ropert and K. Krnjevic. 1982. Dye-coupling between pyramidal cells of rat hippocampus in vivo. Brain Res. 238, 239–244.CrossRefGoogle Scholar
  17. Major, G., A. U. Larkman, P. Jonas, B. Sakman and J. J. B. Jack. 1994. Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J. Neuroosci. 14, 4613–4638.Google Scholar
  18. Poznanski, R. R. 1987. Techniques for obt aining analytical solutions for the somatic shunt cable model. Math. Biosci. 85, 13–35.MathSciNetCrossRefMATHGoogle Scholar
  19. Poznanski, R. R. 1988. Membrane voltage changes in passive dendritic trees: a tapering equivalent cylinder model. IMA J. Math. Appl. Med. & Bioi. 5, 113–145.MathSciNetCrossRefMATHGoogle Scholar
  20. Poznanski, R. R. 1994. Electrotonic length estimates ofCA3 hippocampal pyramidal neurons. Neurosci. Res. Comnnm. 14, 93–100.Google Scholar
  21. Publicover, N. G. 1989. Mathematical models of intercellular communication. In Cell Interactions and Gap Junctions, N. Sperelakis and W. C. Cole (Eds), Vol. 1, pp. 183–201. Boca Raton: CRC Press.Google Scholar
  22. Rall, W. 1969. Time constants and electro tonic length of membrane cylinders and neurons. Biophys. J. 9, 1483–1508.CrossRefGoogle Scholar
  23. Rall, W. 1981. Functional aspects of neuronal geometry. In Neurones Without Impulses, A. Roberts and B. M. Bush (Eds). Cambridge: Cambridge University Press.Google Scholar
  24. Reece, L. J. and P. A. Schwartzkroin. 1991. Effect of cholinergic agonists on immature rat hippocampal neurons. Develop. Brain Res. 60, 29–42.CrossRefGoogle Scholar
  25. Schmalbruch, H. and H. Jahnsen. 1981. Gap-junctions on CA3 pyramidal cells of guinea pig hippocampus shown by freeze-fracture. Brain Res. 217, 175–178.CrossRefGoogle Scholar
  26. Schuster, T. H. 1992. Gap junctions and electrotonic coupling between hippocampal neurons: recent evidence and possible significance-a review. Concepts Neurosci. 3, 135–155.Google Scholar
  27. Skrzypek, J. 1984. Electrical coupling between horizontal cell bodies in the tiger salamander retina. Vis. Research. 24, 701–711.CrossRefGoogle Scholar
  28. Spruston, N. and D. Johnston. 1992. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol. 67, 508–529.Google Scholar
  29. Spruston, N., D. B. Jaffe, S. H. Williams and D. Johnston. 1993. Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events. J. Neurophysiol. 70, 781–802.Google Scholar
  30. Teranishi, T., K. Negishi and S. Kato. 1983. Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina. Nature 301, 243–246.CrossRefGoogle Scholar
  31. Traub, R. D. 1982. Simulation of intrinsic bursting in CA3 hippocampal neurons. Neuroscience 7, 1233–1242.CrossRefGoogle Scholar
  32. Traub, R. D., F. E. Dudek, C. P. Taylor and W. D. Knowles. 1985. Simulation of hippocampal afterdischarges synchronized by electrical interactions. Neuroscience 14, 1033–1038.CrossRefGoogle Scholar
  33. Traub, R. D. and R. Miles. 1991. Neuronal Necworks ofche Hippocampus. New York: Cambridge University Press.CrossRefGoogle Scholar
  34. Traub, R. D. and R. K. S. Wong. 1983. Synaptic mechanisms underlying interictal spike initiation in a hippocampal network. Neurology 33, 257–266.CrossRefGoogle Scholar
  35. Traub, R. D., R. K. S. Wong, R. Miles and H. Michelson. 1991. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on instrinsic conductances. J. Neurophysiol. 66, 635–650.Google Scholar
  36. Treves, A. and E. T. Rolls. 1994. Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391.CrossRefGoogle Scholar
  37. Turner, D. A. 1984. Segmental cable evaluation of somatic transients in hippocampal neurons (CA I, CA3, and dentate). Biophys. J. 46, 73–84.CrossRefGoogle Scholar
  38. Turner, D. A. and P. A. Schwartzkroin. 1983. Electrical characteristics of dendrites and dendritic spines in intracellularly stained CA3 and dentate hippocampal neurons. J. Neurosci. 3, 2381–2394.Google Scholar
  39. Turner, D. A. and P. A. Schwartzkroin. 1984. Passive electrotonic structure and dendritic properties of hippocampal neurons. In Brain Slices, R. Dingledine (Ed), pp. 25–50. New York: Plenum Press.CrossRefGoogle Scholar
  40. Turner, D. A. and D. L. Deupree. 1991. Functional elongation of CA1 hippocampal neurons with aging in Fischer 344 rats. Neurobiol. Aging 12, 201–210.CrossRefGoogle Scholar
  41. Turner, D. A., H. V. Wheal, E. Stockley and H. Cole. 1991. Three dimensional reconstruction and analysis of the cable properties of neurons. In Cellular Neurobiology, J. Chad and H. Wheal (Eds), pp. 225–246. Oxford: IRL Press.Google Scholar

Copyright information

© Society of Mathematical Biology 1995

Authors and Affiliations

  • R. R. Poznanski
    • 1
  • W. G. Gibson
    • 1
  • M. R. Bennett
    • 1
  1. 1.The Neurobiology Laboratory, Department of Physiology and The School of Mathematics and StatisticsUniversity of SydneyAustralia

Personalised recommendations