Journal of Optics

, Volume 33, Issue 2, pp 119–127 | Cite as

A Grating Scale for Noise Free Natural Interference Fringe Suitable for Compact Displacement Measuring Grating Interferometer

  • Ajay Shankar
  • L. S. Tanwar
  • R. S. Sirohi


A state of the art grating interferometer using the natural interference pattern from first order diffraction beams whose fringe periodicity changes half of the grating pitch whose movement or phase information gives the desired displacement measurement. In order to use such fringe it is essential to suppress zero and even order diffraction order beams which is done, generally, by introducing a half wave path difference from two phase zones on each grating element zone in a binary phase grating with 50% fill factor. The presence of 3rd order beam restricts the placement of detector closer to the grating scale and so putting restriction on compactness of interferometer. A grating element groove structure is proposed which eliminates intensities in even 3rd and 6th order enabling placement of detector far closer to increase compactness of set-up.


Binary Grating Grating Element Groove Depth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ronchi, Vasco: Forty Years of History of a Grating Interferometer. Appl. Optics, Vol.3, no. 4, p 437–451 April (1964)CrossRefADSGoogle Scholar
  2. 2.
    Garner H., Kok-Meng Lee, Guo L., Advanced Intelligent Mechatronics 1999, Proceedings 1999 IEEE/ASME International Conference on, p 126–131 19-23 September (1999).Google Scholar
  3. 3.
    Creath K. and Schmit J., Optics and Lasers in Engineering, Vol.24 p 365–379 (1996).CrossRefADSGoogle Scholar
  4. 4.
    Voirin G., Parriaux O, Vuilliomenit H, Optical Engineering, Vol.34 No.9, p 2687–2690 September (1995).CrossRefADSGoogle Scholar
  5. 5.
    Xiong Z., Peng G.D., Wu B. and Chu PL. Journal of Lightwave Technology, Vol. 17, No. 11 p2361–2365 November (1999).CrossRefADSGoogle Scholar
  6. 6.
    Hegedus Z.S., Applied Optics. Vol.36, No. 1 p247–252 (1997).CrossRefADSGoogle Scholar
  7. 7.
    MicroE Systems, USA, Pure Precision in Technology section at its web site http://www.microesys.comGoogle Scholar
  8. 8.
    Dammann H., Optik 31 p95–104 (1970)Google Scholar
  9. 9.
    Dammann H. and Gortler K., Opt. Communications, Vol.3, p312 (1971)CrossRefADSGoogle Scholar
  10. 10.
    Lee Wai-Hon. Applied Optics, Vol.18, No.13, p2152–2158.Google Scholar
  11. 11.
    Dammann H. and Klotz E. Optica Acta, Vol.24, No, 4 p505–515 (1977).CrossRefADSGoogle Scholar
  12. 12.
    Krackhardt U. and Streibl N. Optics Communications Vol.75, No.1, 2 (1989).Google Scholar
  13. 13.
    Morrison R.L., Journal of Optical Society of America, A, Vol.9, No.3 p464–471 (1992).CrossRefADSGoogle Scholar
  14. 14.
    Walker S.J., Jahns J., Li L., Mnasfield W.M., Mulgrew P., Tennant D.M., Roberts C.W., West L.C. and Ailawadi N.K., Applied Optics, Vol.32, No. 14 p2494–2501 (1993).CrossRefADSGoogle Scholar
  15. 15.
    Dobson D.C., Applied Mathematics and Optimization Vol.40 p61–78 (1999).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Optical Society of India 2004

Authors and Affiliations

  • Ajay Shankar
    • 1
  • L. S. Tanwar
    • 1
  • R. S. Sirohi
    • 1
  1. 1.Precision Industrial Metrology Lab.NSITNew DelhiIndia

Personalised recommendations