Journal of Optics

, Volume 32, Issue 3, pp 107–118 | Cite as

Effect of Refractive Index Dip on Splice Loss in Graded-Index Single-Mode Fibers



The effect of refractive index dip on splice loss in arbitrarily graded-index single-mode fiber has been studied utilising the four-term polynomial formula and the infinite sum representation for power transmission coefficient. In the former case, we have used a highly accurate single parameter variational approximation, whereas in the latter, we have used infinite sum of the Laguerre-Gaussian functions for the representation of the LP01 mode. The results obtained by the infinite sum representation represent the exact results.


single-mode fiber refractive index dip splice loss 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Marcuse, Bell Syst. Tech. J., 56, 703–718, (1977).CrossRefGoogle Scholar
  2. 2.
    J. I. Sakai and T. Kimura, Appl. Opt., 17, 2848–2853, (1978).CrossRefADSGoogle Scholar
  3. 3.
    S. Nemoto and T. Makimoto, Optical and Quantum Electron., 11, 447–457, (1979).CrossRefGoogle Scholar
  4. 4.
    S. I. Hosain, A. Sharma and A. K. Ghatak, Appl. Opt., 21, 2716–2720, (1982).CrossRefADSGoogle Scholar
  5. 5.
    J. P. Meunier and S. I. Hosain, J. Lightwave Technol., 9, 1457–1463, (1991).CrossRefADSGoogle Scholar
  6. 6.
    J. P. Meunier and S. I. Hosain, J. Lightwave Technol., 10, 1521–1526, (1992).CrossRefADSGoogle Scholar
  7. 7.
    J. P. Meunier, Z. H. Wang and S. I. Hosain, IEEE Photon. Technol. Lett., 6, 998–1000, (1994).CrossRefADSGoogle Scholar
  8. 8.
    R. L. Gallawa, A. Kumar and A. Weisshaar, Optical and Quantum Electron., 26, 165–172, (1994).CrossRefGoogle Scholar
  9. 9.
    A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics, Cambridge University Press, U. K., (1998).CrossRefGoogle Scholar
  10. 10.
    W. Streifer and C. N. Kurtz, J. Opt. Soc. Am., 57, 779–786, (1967).CrossRefADSGoogle Scholar
  11. 11.
    A. W. Snyder, Proc. IEEE, 69, 6–13, (1981).CrossRefGoogle Scholar
  12. 12.
    A. Sharma, S. I. Hosain and A. K. Ghatak, Optical and Quantum Electron., 14, 7–15, (1982).CrossRefGoogle Scholar
  13. 13.
    G. D. Peng and A. Ankiewicz, Proc. IEEE, Pt. J, 138, 33–38, (1991).Google Scholar
  14. 14.
    M. J. Holmes, D. M. Spirit and F. P. Payne, J. Lightwave Technol., 12, 193–201, (1994).CrossRefADSGoogle Scholar
  15. 15.
    M-S. Wu, M-H. Lee and W-H. Tsai, J. Lightwave Technol., 14, 121–125, (1996).CrossRefADSGoogle Scholar
  16. 16.
    P. Pattojoshi and S.I. Hosain, Microwave and Optical Technol. Lett., 18, 63–73, (1998).CrossRefGoogle Scholar
  17. 17.
    J. P. Meunier, J. Pigeon and J. N. Massot, Optical and Quantum Electron., 13, 71–83, (1981).CrossRefGoogle Scholar
  18. 18.
    E. K. Sharma, A. Sharma and I. C. Goyal, IEEE J. Quantum Electron., QE-18, 1484–1489, (1982).CrossRefADSGoogle Scholar
  19. 19.
    S. N. Sarkar, S. I. Hosain, I.C. Goyal and A. K. Ghatak, Optics Commun., 49, 108–110, (1984).CrossRefADSGoogle Scholar
  20. 20.
    I. S. Gradshteyn and I. W. Ryzhik, Table of Integrals, Series and Products, Corrected and enlarged edition, New York: Academic, (1980).MATHGoogle Scholar

Copyright information

© Optical Society of India 2003

Authors and Affiliations

  1. 1.Post Graduate Department of Physics & Computer ScienceFiber Optics and Optoelectronics GroupUSA
  2. 2.SambalpurIndia

Personalised recommendations