Computational Statistics

, Volume 18, Issue 3, pp 417–434 | Cite as

A PDE based Implementation of the Hull&White Model for Cashflow Derivatives

  • Sascha Meyer
  • Willi Schwarz


A new implementation for the one-dimensional Hull&White model is developed. It is motivated by a geometrical approach to construct an invariant manifold for the future dynamics of forward zero coupon bond prices under a forward martingale measure. This reduces the option-pricing problem for cashflow derivatives to the solution of a series of heat equations. The heat equation is solved by a standard Crank-Nicolson scheme. The new method avoids the calibration used in traditional solution approaches. The computation of prices for European and Bermudan swaptions shows the convergence behavior of our new implementation. We also demonstrate the efficiency of our new approach resulting in a speed improvement by one order of magnitude compared to traditional trinomial tree implementations.

Key words

Hull&White model Invariant Manifold Heat Equation Crank-Nicolson 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Björk, T. & Christensen, B. J. (1999),,Interest rate dynamics and consistent forward rate curves., Math. Finance 9(4), 323–348CrossRefMATHMathSciNetGoogle Scholar
  2. Brace, A., Gatarek, D. & Musiela, M. (1997),,The market model of interest rate dynamics, Math. Finance 7, 127–154CrossRefMATHMathSciNetGoogle Scholar
  3. Dempster, M.A.H & Hutton, J.P. (1997),,Numerical Valuation of Cross-Currency Swaps and Swaptions, in Mathematics of Derivative Securities (Dempster, M.H.A. and Pliska, S.R. ed.), Cambridge University PressGoogle Scholar
  4. Gandhi, S. K. & Hunt, P.J. (1997),,Numerical option pricing using conditioned diffusions, in Mathematics of Derivative Securities (Dempster, M.H.A. and Pliska, S.R. ed.), Cambridge University PressGoogle Scholar
  5. Hackbusch, W. (1989),,Integral Equations, BirkhäuserGoogle Scholar
  6. Heath, D., Jarrow, R. & Morton, A. (1992),,Bond pricing and the term structure of interest rates: A new methodology, Econometrica, 60, 77–105CrossRefMATHGoogle Scholar
  7. Hull; J. & White, A. (1990),,Pricing interest rate derivative securities, Review of Financial Studies 3(4), 573–592CrossRefGoogle Scholar
  8. Hull; J. & White, A. (1994),,Numerical procedures for implementing term structure models I: Single factor models, Journal of Derivatives, 2(1), 7–16CrossRefGoogle Scholar
  9. Karatzas, I. & Shreve, S. (1994),,Brownian Motion and Stochastic Calculus, 2nd Edition, SpringerGoogle Scholar
  10. Kress, R. (1989),,Linear Integral Equations, SpringerGoogle Scholar
  11. Musiela, M & Rutkowski, M (1997),,Martingale Methods in Financial Modelling, 2nd Edition, SpringerGoogle Scholar
  12. Oeksendal, B. (1995),,Stochastic Differential Equations, 4th edition, SpringerGoogle Scholar
  13. Richtmyer, R.D & Morton, K.W. (1967),,Difference Methods for initial-value problems, 2nd Edition, Intersience Publishers (1967)Google Scholar
  14. Vasicek, O. A. (1977),,An equilibrium characterisation of the term structure, Journal of Financial Economics, 5, 177–188CrossRefGoogle Scholar
  15. Wilmot, P., Dewynne J., and Howison, S. (1993). Option Pricing, Oxford Financial PressGoogle Scholar

Copyright information

© Physica-Verlag 2003

Authors and Affiliations

  • Sascha Meyer
    • 1
  • Willi Schwarz
    • 1
  1. 1.Commerzbank AG Zentraler Stab RisikocontrollingFrankfurt am Main

Personalised recommendations