Nano-Micro Letters

, Volume 2, Issue 4, pp 277–284 | Cite as

Enhanced Photoelectrochemical Properties of Cu2O-loaded Short TiO2 Nanotube Array Electrode Prepared by Sonoelectrochemical Deposition

  • Yanbiao Liu
  • Haibin Zhou
  • Jinhua Li
  • Hongchong Chen
  • Di Li
  • Baoxue Zhou
  • Weimin Cai
Open Access


Copper and titanium remain relatively plentiful in earth crust. Therefore, using them in solar energy conversion technologies are of significant interest. In this work, cuprous oxide (Cu2O-modified short TiO2 nanotube array electrode was prepared based on the following two design ideas: first, the short titania nanotubes obtained from sonoelectrochemical anodization possess excellent charge separation and transportation properties as well as desirable mechanical stability; second, the sonoelectrochemical deposition technique favours the improvement in the combination between Cu2O and TiO2 nanotubes, and favours the dispersion of Cu2O particles. UV-Vis absorption and photo- electronchemical measurements proved that the Cu2O coating extended the visible spectrum absorption and the solar spectrum-induced photocurrent response. Under AM1.5 irradiation, the photocurrent density of the composite electrode (i.e. sonoelectrochemical deposition for 5 min) was more than 4.75 times as high as the pure nanotube electrode. Comparing the photoactivity of the Cu2O/TiO2 electrode obtained using sonoelectrochemical deposition with others that synthesized using plain electrochemical deposition, the photocurrent density of the former electrode was ∼2.2 times higher than that of the latter when biased at 1.0 V (vs. Ag/AgCl). The reproducible photocurrent response under intermittent illumination demonstrated the excellent stability of the composite electrode. Such kind of composite electrode material will have many potential applications in solar cell and other fields.


Cu2Short TiO2 nanotube array Sonoelectrochemical deposition 


  1. 1.
    A. Fujishima and K. Honda, Nature 238, 37 (1972). doi:10.1038/238037a0CrossRefGoogle Scholar
  2. 2.
    S. U. M. Khan, M. Al-Shahry and W. B. Ingler Jr., Science 297, 2243 (2002). doi:10.1126/science.1075035CrossRefGoogle Scholar
  3. 3.
    B. O’Regan and M. Gratzel, Nature 353, 737 (1991). doi:10.1038/353737a0CrossRefGoogle Scholar
  4. 4.
    J. H. Park, S. Kim and A. J. Bard, Nano Lett. 6, 24 (2006). doi:10.1021/nl051807yCrossRefGoogle Scholar
  5. 5.
    H. Kisch, S. Sakthivel, M. Janczarek and D. Mitoraj, J. Phys. Chem. C 111, 11445 (2007). doi:10.1021/jp066457yCrossRefGoogle Scholar
  6. 6.
    S. G. Chen, M. Paulose, C. M. Ruan, G. K. Mor, O. K. Varghese, D. Kouzoudis and C. A. Grimes, J. Photochem. Photobiol. A: Chem. 177, 177 (2006). doi:10.1016/j.jphotochem.2005.05.023CrossRefGoogle Scholar
  7. 7.
    A. A. Ismail, Appl. Catal. B: Environ. 58, 115 (2005). doi:10.1016/j.apcatb.2004.11.022CrossRefGoogle Scholar
  8. 8.
    J. Y. Kim, S. B. Choi, J. H. Noh, S. HunYoon, S. Lee, T. H. Noh, A. J. Frank and K. S. Hong, Langmuir 25, 5348 (2009). doi:10.1021/la804310zCrossRefGoogle Scholar
  9. 9.
    P. E. de Jongh, D. Vanmaekelbergh and J. J. Kelly, J. Electrochemi. Soc. 147, 486 (2000).CrossRefGoogle Scholar
  10. 10.
    G. K. Mor, O. K. Varghese, R. H. T. Wilke, S. Sharma, K. Shankar, T. J. Latempa, K. S. Choi and C. A. Grimes, Nano Lett. 8, 1906 (2008). doi:10.1021/nl080572yCrossRefGoogle Scholar
  11. 11.
    J. Herion, E. A. Niekisch and G. Scharl, Sol. Energy Mater. Sol. Cells 4, 101 (1980). doi:10.1016/0165-1633(80)90022-2CrossRefGoogle Scholar
  12. 12.
    W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. H. Baeck and E.W. Mcfarland, Sol. Energy Mater. Sol. Cells 77, 229 (2003). doi:10.1016/S0927-0248(02)00343-4CrossRefGoogle Scholar
  13. 13.
    N. Helaili, Y. Bessekhouad, A. Bouguelia and M. Trari, J. Hazard. Mater. 168, 484 (2009). doi:10.1016/j.jhazmat.2009.02.066Google Scholar
  14. 14.
    Y. G. Zhang, L. L. Ma, J. L. Li and Y. Yu, Environ. Sci. Technol. 41, 6264 (2007). doi:10.1021/es070345iCrossRefGoogle Scholar
  15. 15.
    D. W. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen and E. C. Dickey, J. Mater. Res. 16, 3331 (2001). doi:10.1557/JMR.2001.0457CrossRefGoogle Scholar
  16. 16.
    Y. Hou, X. Y. Li, X. J. Zou, X. Quan and G. H. Chen, Environ. Sci. Technol. 43, 858 (2009). doi:10.1021/es802420uCrossRefGoogle Scholar
  17. 17.
    L. Huang, S. Zhang, F. Peng, H. Wang, H. Yu, J. Yang, S. Zhang, H. Zhao, Scripta Mater. 63, 159 (2010). doi:10.10 16/j.scriptamat.2010.03.042CrossRefGoogle Scholar
  18. 18.
    Z. Y. Liu, X. T. Zhang, S. Nishimoto, M. Jin, D. A. Tryk, T. Murakami and A. Fujishima, J. Phys. Chem. C 112, 253 (2008). doi:10.1021/jp0772732CrossRefGoogle Scholar
  19. 19.
    J. L. Zhang, B. X. Zhou, Q. Zheng, J. H. Li, J. Bai, Y. B. Liu and W. M. Cai, Water Res. 43, 1986 (2009). doi:10.1016/j.watres.2009.01.035CrossRefGoogle Scholar
  20. 20.
    Y. B. Liu, B. X. Zhou, X. J. Gan, J. H. Li, J. Bai and W. M. Cai, Appl. Catal. B: Environ. 92, 326 (2009). doi:10.1016/j.apcatb.2009.08.011CrossRefGoogle Scholar
  21. 21.
    J. Bai, B. X. Zhou, L. H. Li, Y. B. Liu, Q. Zheng, X. Y. Zhu, W. M. Cai, J. S. Liao and L. X. Zou, J. Mater. Sci. 43, 1880 (2008). doi:10.1007/s10853-007-2418-8CrossRefGoogle Scholar
  22. 22.
    A. O. Musa, T. Akomolafe and M. J. Carter, Sol. Energy Mater. Sol. Cells 51, 305 (1998). doi:10.1016/S0927-0248(97)00233-XCrossRefGoogle Scholar
  23. 23.
    Y. W. Tang, Z. G. Chen, Z. J. Jia, L. S. Zhang and J. L. Li, Mater. Lett. 59, 434 (2005). doi:10.1016/j.matlet.2004.09.040CrossRefGoogle Scholar
  24. 24.
    Q. Zheng, B. X. Zhou, J. Bai, L. H. Li, Z. J. Jin, J. L. Zhang, J. H. Li, Y. B. Liu, W. M. Cai and X. Y. Zhu, Adv. Mater. 20, 1044 (2008). doi:10.1002/adma.200701619CrossRefGoogle Scholar
  25. 25.
    J. Bai, J. H. Li, Y. B. Liu, B. X. Zhou and W. M. Cai, Appl. Catal. B Environ. 95, 408 (2010). doi:10.1016/j.apcatb.2010.01.020CrossRefGoogle Scholar
  26. 26.
    Y. B. Liu, B. X. Zhou, J. Bai, J. H. Li, J. L. Zhang, Q. Zheng, X. Y. Zhu and W. M. Cai, Appl. Catal. B Environ. 89, 142 (2009). doi:10.1016/j.apcatb.2008.11.034CrossRefGoogle Scholar
  27. 27.
    Y. Hou, X. Y. Li, Q. Zhao, X. Quan and G. H. Chen, Appl. Phys. Lett. 95, 093108 (2009). doi:10.1063/1.3224181CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2010

Authors and Affiliations

  • Yanbiao Liu
    • 1
  • Haibin Zhou
    • 1
  • Jinhua Li
    • 1
  • Hongchong Chen
    • 1
  • Di Li
    • 1
  • Baoxue Zhou
    • 1
  • Weimin Cai
    • 1
  1. 1.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations