Nano-Micro Letters

, Volume 3, Issue 4, pp 249–255 | Cite as

Research on the Forming Mechanism of Micro/Nano Features during the Cast Molding Process

Open Access


Cast molding process has provided a reliable, simple and cost-effective way to fabricate micro structures since decades ago. In order to obtain structures with fine, dense and deep nano-size features by cast molding, it is necessary to study the forming mechanism in the process. In this paper, based on major steps of cast molding, filling models of liquid are established and solved; and the forming mechanism of liquid is revealed. Moreover, the scale effect between the liquid and the cavity on the filling velocity of liquid is studied. It is also interesting to find out that the wettability of liquid on the cavity may be changed from wetting to dewetting depends on the pressure difference. Finally, we experimentally verify some of our modeling results on the flowing and filling state of the liquid during the cast molding process.


Forming mechanism Cast molding process Nano-size features Liquid 


  1. [1]
    S. Masuda, M. Washizu and T. Nanba, IEEE Trans. Ind. Appl. 25, 732 (1989). Scholar
  2. [2]
    B. Jo and D. J. Beebe, Proc. SPIE. 3877, 222 (1999). Scholar
  3. [3]
    G. Chen, G. T. Mccandless, R. L. Mccarley and S. A. Soper, Lab Chip. 7, 1424 (2007).Google Scholar
  4. [4]
    L. Gitlin, P. Schulze and D. Belder, Lab Chip. 9, 3000 (2009). Scholar
  5. [5]
    L. D. Sio, J. G. Cuennet, A. E. Vasdekis and D. Psaltis, Appl. Phys. Lett. 96, 131112 (2010). Scholar
  6. [6]
    Y. Xia, G. M. Whitesides, Angew. Chem. Int. Ed. Engl. 37, 550 (1998).<550::AID-ANIE550>3.0.CO;2-GCrossRefGoogle Scholar
  7. [7]
    W. M. Choi and O. O. Park, Microelectron. Eng. 70, 131 (2003). Scholar
  8. [8]
    U. Plachetka, M. Bender, A. Fuchs, B. Vratzov, T. Glinsner, F. Lindner and H. Kurz, Microelectron. Eng. 73, 167 (2004). Scholar
  9. [9]
    X. Ye, Y. Ding, H. Liu and Y. Duan, Thin Solid Films 581, 6933 (2010). Scholar
  10. [10]
    X. Ye, Y. Ding, Y. Duan, H. Liu and B. Lu, J. Vac. Sci. Technol. B 28, 138 (2010). Scholar
  11. [11]
    J. Narasimhan and I. Papautsky, J. Micromech. Microeng. 14, 96 (2004). Scholar
  12. [12]
    C. R. Martin and I. A. Aksay, J. Electroceramics. 12, 53 (2004).CrossRefGoogle Scholar
  13. [13]
    V. N. Goral, Y. Hsieh, O. N. Petzold, R. A. Faris and P. K. Yuen, J. Micromech. Microeng. 21, 017002 (2011). Scholar
  14. [14]
    X. Ye, Y. Ding, Y. Duan, H. Liu and J. Shao, J. Vac. Sci. Technol. B 28, 86 (2010). Scholar
  15. [15]
    K. Ren, W. Dai, J. Zhou, J. Su and H. Wu, PNAS 17, 8162 (2011). Scholar
  16. [16]
    Y. M. Chiang, M. Bachman, C. Chu and G. P. Li, Proc. SPIE. 3877, 303 (1999). Scholar
  17. [17]
    X. Ye, H. Liu, Y. Ding, H. Li and B. Lu, Microelectron. Eng. 86, 310 (2009). Scholar
  18. [18]
    S. A. Somers and H. T. Davis, J. Chem. Phys. 96, 5389 (1992). Scholar
  19. [19]
    K. P. Travis, B. D. Todd and D. J. Evans, Phys. Rev. E55, 4288 (1997). Scholar
  20. [20]
    A. C. Eringen and K. Okada, Int. J. Eng. Sci. 33, 2297 (1995). Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2011

Authors and Affiliations

  1. 1.Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing UniversityNanjingChina
  2. 2.State Key Laboratory of Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations