Advertisement

Nano-Micro Letters

, Volume 3, Issue 2, pp 108–114 | Cite as

The Effect of Condensation on the Morphology and Magnetic Properties of Modified Barium Hexaferrite (BaFe12O19)

  • Z. Durmus
  • H. Sozeri
  • M. S. Toprak
  • A. Baykal
Open Access
Article

Abstract

We present a comparison for the effect of condensation on the morphology and magnetic properties of oleic acid modified BaFe12O19 nanoparticles. Two different samples of BaFe12O19 nanoparticles were synthesized by dehydration (Z1) and rotary evaporation (Z2) method, respectively. Oleic acid was used as the surface modification agent to observe the morphological and magnetic changes. The nanoparticles were analyzed by XRD, FTIR, TGA, SEM, and VSM techniques for structural and physicochemical characteristics. Crystallographic analysis reveals the phase as hexaferrite and the average crystallite size of Z1 and Z2 is 21±3 nm and 17±2 nm, respectively. Rotary evaporator accelerates the condensation process in viscous gel (Z2). Due to the use of rotary evaporator, the coating with oleic acid for Z2 product has been accomplished very well, as compared with Z1. As a result, saturation magnetization of Z2 sample is much lower than that of Z1 sample.

Keywords

BaFe12O19 Nanoparticles Rotary evaporatory Condensation Magnetic properties 

References

  1. [1]
    J. Smit and H. P. J. Wijn, “Ferrites”, Eindhoven, Philips’ technical library, 1959.Google Scholar
  2. [2]
    Y. W. Dou, “Ferrite”, Jiangsu Science and Technology Press, Nanjing, China, 1996.Google Scholar
  3. [3]
    N. Dishovske, A. Petkov, I. Nedkov and I. Razkazov, IEEE Trans. Magn. 30, 969 (1994). http://dx.doi.org/10.1109/20.312461CrossRefGoogle Scholar
  4. [4]
    M. J. Iqbal, M. N. Ashiq, P. H. Gomez and J. M. Munoz, J. Magn. Magn. Mater. 320, 881 (2008). http://dx.doi.org/10.1016/j.jmmm.2007.09.005CrossRefGoogle Scholar
  5. [5]
    S. J. Campbell, W. A. Kaczmarek, E. Wu and K. D. Jayasuriya, IEEE Trans. Magn. 30, 742 (1994). http://dx.doi.org/10.1109/20.312394CrossRefGoogle Scholar
  6. [6]
    S. J. Campbell, E. Wu, W. A. Kaczmarek and K. D. Jayasuriya, Hyperfine Inter. 92, 933 (1994). http://dx.doi.org/10.1007/BF02065715CrossRefGoogle Scholar
  7. [7]
    V. K. Sankaranarayanan, Q. A. Pankhurst, D. P. E. Dickson and C. E. Johnson, J. Magn. Magn. Mater. 125, 199 (1993). http://dx.doi.org/10.1016/0304-8853(93)90838-SCrossRefGoogle Scholar
  8. [8]
    S. J. Campbell, W. A. Kaczmarek and G. M. Wang, Nanostruct. Mater. 6, 687 (1995). http://dx.doi.org/10.1016/0965-9773(95)00151-4CrossRefGoogle Scholar
  9. [9]
    P. G. Bercoff and H. R. Bertorello, J. Magn. Magn. Mater. 205, 261 (1999). http://dx.doi.org/10.1016/S0304-8853(99)00471-0CrossRefGoogle Scholar
  10. [10]
    Z. X. Tang, S. Nafis, C. M. Sorensen and G. C. Hadjipanayis, IEEE Trans. Magn. 25, 4236 (1989). http://dx.doi.org/10.1109/20.42580CrossRefGoogle Scholar
  11. [11]
    S. R. Janasi, M. Emura, F. J. Landgraf and D. J. Rodrigues, IEEE Trans. Magn. 36 (2000) 3327. http://dx.doi.org/10.1109/20.908788CrossRefGoogle Scholar
  12. [12]
    D. Barb, L. Diamandescu, A. Rusi, D. Tarabasanu-Mihaila, M. Morariu and V. Teodorescu, J. Mater. Sci. 21, 1118 (1986). http://dx.doi.org/10.1007/BF00553240CrossRefGoogle Scholar
  13. [13]
    W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan and Y. Du, J. Magn. Magn. Mater. 168, 196 (1997). http://dx.doi.org/10.1016/S0304-8853(96)00664-6CrossRefGoogle Scholar
  14. [14]
    H. Sozeri, J. Magn. Magn. Mater. 321, 2717 (2009). http://dx.doi.org/10.1016/j.jmmm.2009.03.075CrossRefGoogle Scholar
  15. [15]
    L. Affleck, M. D. Aguas, I. P. Parkin, Q. A. Pankhurst and M. V. Kuznetsov, J. Mater. Chem. 10, 1925 (2000). http://dx.doi.org/10.1039/b002431gCrossRefGoogle Scholar
  16. [16]
    H. Sozeri and N. Ghazanfari, Mat. Chem. Phys. 113, 977 (2009). http://dx.doi.org/10.1016/j.matchemphys.2008.08.079CrossRefGoogle Scholar
  17. [17]
    P. Gao, Y. Chen, H. Lv, X. Li, Y. Wang and Q. Zhang, Int J. Hydro. Energy 34, 3065 (2009). http://dx.doi.org/10.1016/j.ijhydene.2008.12.050CrossRefGoogle Scholar
  18. [18]
    P. N. Kumta, D. Gallet, A. Waghray, G. E. Blomgren and M. P. Setter, J. Power Sources 72, 91 (1998). http://dx.doi.org/10.1016/S0378-7753(97)02680-3CrossRefGoogle Scholar
  19. [19]
    G. Mendoza-Suarez, M. C. Cisneros-Morales, M. M. Cisneros-Guerrero, K. K. Johal, H. Mancha-Molinar, O. E. Ayala-Valenzuela and J. I. Escalante-Garcia, Mater. Chem. Phys. 77, 796 (2002). http://dx.doi.org/10.1016/S0254-0584(02)00141-4CrossRefGoogle Scholar
  20. [20]
    G. Mendoza-Suarez, J. A. Matutes-Aquino, J. I. Escalante-Garcia, H. Mancha-Molinar, D. Rios-Jara and K. K. Johal, J. Magn. Magn. Mater. 223, 55 (2001). http://dx.doi.org/10.1016/S0304-8853(00)00583-7CrossRefGoogle Scholar
  21. [21]
    S. Che, J. Wang and Q. Chen, J. Phys. Condens. Matter 15, L335 (2003). http://dx.doi.org/10.1088/0953-8984/15/22/101CrossRefGoogle Scholar
  22. [22]
    W. Zhong, W. Ding, N. Zhang, J. Hong, Q. Yan, and Y. Du, J. Magn. Magn. Mater. 168, 196 (1997). http://dx.doi.org/10.1016/S0304-8853(96)00664-6CrossRefGoogle Scholar
  23. [23]
    C. Surig, K. A. Hempel and Ch. Sauer, J. Magn. Magn. Mater. 157. 268 (1996). http://dx.doi.org/10.1016/0304-8853(95)01201-XCrossRefGoogle Scholar
  24. [24]
    V. V Korolev, A. G. Ramazanova and A. V. Blinov, Russ. Chem. Bull. 51, 2044 (2002). http://dx.doi.org/10.1023/A:1021655708965CrossRefGoogle Scholar
  25. [25]
    S. Kong, P. Zhang, X. Wen, P. Pi, J. Cheng, Z. Yang and J. Hai, Particuology 6, 185 (2008). http://dx.doi.org/10.1016/j.partic.2008.03.004CrossRefGoogle Scholar
  26. [26]
    A. Mali and A. Ataei, Scripta Mat. 53, 1065 (2005). http://dx.doi.org/10.1016/j.scriptamat.2005.06.037CrossRefGoogle Scholar
  27. [27]
    H. Sozeri, J. Alloys Comp. 486, 809 (2009).CrossRefGoogle Scholar
  28. [28]
    G. Li, W. Peng, X. Li, X. Fan, X. Li, G. Zhang and F. Zhang, App. Surf. Sci. 254, 4970 (2008). http://dx.doi.org/10.1016/j.apsusc.2008.01.167CrossRefGoogle Scholar
  29. [29]
    Q. Lan, C. Liu, F. Yang, S. Liu, J. Xu and D. Sun, J. Coll. Inter. Sci. 310, 260 (2007). http://dx.doi.org/10.1016/j.jcis.2007.01.081CrossRefGoogle Scholar
  30. [30]
    L. Zhang, R. He and H. C. Gu, Appl. Surf. Sci. 253, 2611 (2006). http://dx.doi.org/10.1016/j.apsusc.2006.05.023CrossRefGoogle Scholar
  31. [31]
    S. Maenosonoa, T. Suzuki, and S. Saita J. Magn. Magn. Mater. 320, L79 (2008). http://dx.doi.org/10.1016/j.jmmm.2008.01.026CrossRefGoogle Scholar
  32. [32]
    R. C. Pullar and A. K. Bhattacharya, J. Magn. Magn. Mater. 300, 490 (2006). http://dx.doi.org/10.1016/j.jmmm.2005.06.001CrossRefGoogle Scholar
  33. [33]
    A. Baykal, N. Kasapoglu, Y. KÖseoglu, A. C. Basaran, H. Kavas and M. S. Toprak, Cent. Eur. J. Chem. 6, 125 (2008). http://dx.doi.org/10.2478/s11532-007-0070-4CrossRefGoogle Scholar
  34. [34]
    N. Kasapoglu, A. Baykal, Y. Koseoglu and M. S. Toprak, Scripta Mater. 57, 441 (2007). http://dx.doi.org/10.1016/j.scriptamat.2007.04.042CrossRefGoogle Scholar
  35. [35]
    V. V. Korolev, A. G. Ramazanova and A. V. Blinov, Particuology 6, 185 (2008). http://dx.doi.org/10.1016/j.partic.2008.03.004CrossRefGoogle Scholar
  36. [36]
    B. BirsÖz, A. Baykal, H. SÖzeri and M. S. Toprak, J. Alloys Comp. 493, 481 (2010). http://dx.doi.org/10.1016/j.jallcom.2009.12.135CrossRefGoogle Scholar
  37. [37]
    Z. Durmus, B. Unal, M. S. Toprak, H. Sozeri and A. Baykal, Polyhedron 30, 1349 (2011). http://dx.doi.org/10.1016/j.poly.2011.02.044CrossRefGoogle Scholar
  38. [38]
    Z. Durmus, B. Unal, M. S. Toprak, A. Baykal and A. Aslan, Physica B 406, 2298 (2011). http://dx.doi.org/10.1016/j.physb.2011.03.063CrossRefGoogle Scholar
  39. [39]
    B. Unal, Z. Durmus, A. Baykal, M. S. Toprak, H. Sozeri and A. Bozkurt, J. Alloys Comp. İn press. http://dx.doi.org/10.1016/j.jallcom.2011.05.001
  40. [40]
    X. Tang, B. Y. Zhao, K. A. Hu, J. Mater. Sci. 41, 3867 (2006).CrossRefGoogle Scholar
  41. [41]
    T. Wejrzanowski, R. Pielaszek, A. Opalinska, H. Matysiak, W. Łojkowski and K. J. Kurzydłwski, Appl. Surf. Sci. 253, 204 (2006). http://dx.doi.org/10.1016/j.apsusc.2006.05.089CrossRefGoogle Scholar
  42. [42]
    R. Pielaszek, “Analytical expression for diffraction line profile for polydispersive powders”, in: Proceedings of the XIX Conference, Appl. Crystallography, Krakow, Poland, 43, 2003.Google Scholar
  43. [43]
    M. N. Ashiq, M. J. Iqbal and I. H. Gul, J. Magn. Magn. Mat. 323, 259 (2011). http://dx.doi.org/10.1016/j.jmmm.2010.08.054CrossRefGoogle Scholar
  44. [44]
    G. Benito, M. P. Morales, J. Requena, V. Raposo, M. Vazquez and J. S. Moya, J. Magn. Magn. Mater. 234, 65 (2001). http://dx.doi.org/10.1016/S0304-8853(01)00288-8CrossRefGoogle Scholar
  45. [45]
    S. Che, J. Wang and Q. Chen, J. Phys. Cond. Mat. 15, L335 (2003). http://dx.doi.org/10.1088/0953-8984/15/22/101CrossRefGoogle Scholar
  46. [46]
    F. Yen-Pei, L. Cheng-Hsiung and P. Ko-Ying, Jpn. J. Appl. Phys. 42, 2681 (2003). http://dx.doi.org/10.1143/JJAP.42.2681CrossRefGoogle Scholar
  47. [47]
    C. Sürig, K. A. Hempel and C. Sauer, J. Magn. Magn. Mater. 268, 157 (1996).Google Scholar
  48. [48]
    H. Sozeri, İ. Küçük and H. Özkan, J. Magn. Magn. Mater. 323, 1799 (2011).http://dx.doi.org/10.1016/j.jmmm.2011.02.012CrossRefGoogle Scholar
  49. [49]
    J. Dho, E. K. Lee, J. Y. Park and N. H. Nur, J. Magn. Magn. Mater. 285, 164 (2005). http://dx.doi.org/10.1016/j.jmmm.2004.07.033CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2011

Authors and Affiliations

  • Z. Durmus
    • 1
  • H. Sozeri
    • 2
  • M. S. Toprak
    • 3
  • A. Baykal
    • 1
  1. 1.Department of ChemistryFatih UniversityIstanbulTurkey
  2. 2.TUBITAK-UMENational Metrology InstituteGebze-KocaeliTurkey
  3. 3.Functional Materials DivisionRoyal Institute of Technology-KTHStockholmSweden

Personalised recommendations