Nano-Micro Letters

, Volume 2, Issue 3, pp 213–226 | Cite as

Functionalization of carbon nanotubes and other nanocarbons by azide chemistry

Open Access


Following the conventional carbon allotropes of diamond and graphite, fullerene, carbon nanotubes (CNTs) and graphene as 0D, 1D and 2D graphitic macromolecules have been discovered recently in succession, declaring the unlimited potential of carbon-based nanomaterials and nanotechnology. Although CNTs exhibit significant potential applications in advanced materials and other fields due to their extraordinary mechanical strength and electrical/thermal conductivity properties, their low solubility, poor wettability and bad dispersibility in common solvents and solid matrices have limited their processing and applications. Thus, the attempt to achieve wettable/processable CNTs by functionalization has attracted increasing attention in both scientific and industrial communities. In recent years, azide chemistry has been demonstrated as a powerful means to covalently modify CNTs. It consists of two major approaches: click chemistry and nitrene chemistry, which both involve the usage of various azide compounds. The former one is based on highly reactive and stereospecifical Cu(I) catalyzed azide-alkyne cycloaddition reaction; the latter one is based on the electrophilic attack to unsaturated bonds of CNTs with nitrenes as reactive intermediates formed from thermolysis or photolysis of azides. In this mini-review paper, the azide chemistry to functionalize CNTs is highlighted and the corresponding functionalization routes to build CNT-based complex structures are also discussed. Besides, covalent functionalizations of other graphitic nanomaterials such as fullerence and graphene, via azide chemistry, are commented briefly.

Carbon nanotubes Functionalization Click chemistry Nitrene chemistry Nanocomposites Fullerene Graphene 


  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature 318, 162 (1985). doi:10.1038/318162a0CrossRefGoogle Scholar
  2. 2.
    S. Iijima, Nature 354, 56 (1991). doi:10.1038/354056a0CrossRefGoogle Scholar
  3. 3.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov. Science 306, 666 (2004).CrossRefGoogle Scholar
  4. 4.
    S. E. Moulton, A. I. Minett and G. G. Wallace, Sens. Lett. 3, 183 (2005). doi:10.1166/sl.2005.035CrossRefGoogle Scholar
  5. 5.
    M. Terrones, Int. Mater. Rev. 49, 325 (2004). doi:10.1179/174328004X5655CrossRefGoogle Scholar
  6. 6.
    H. J. Dai, Surf. Sci. 500, 218 (2002). doi:10.1016/S0039- 6028(01)01558-8CrossRefGoogle Scholar
  7. 7.
    P. M. Ajayan and O. Z. Zhou, Top. Appl. Phys. 80, 391 (2001). doi:10.1007/3-540-39947-X_14CrossRefGoogle Scholar
  8. 8.
    P. M. Ajayan, Chem. Rev. 99, 1787 (1999). doi:10.1021/cr970102gCrossRefGoogle Scholar
  9. 9.
    C. Gao, Polymer-Functionalized Carbon Nanotubes. In Encyclopedia of Nanoscience and Nanotechnology (Ed. H. S. Nalwa). American Scientific Publishers. 2010.Google Scholar
  10. 10.
    J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rogriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Science 280, 1253 (1998). doi:10.1126/science.280.5367.1253CrossRefGoogle Scholar
  11. 11.
    J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund and R. C. Haddon, Science 282, 95 (1998). doi:10.1126/science.282.5386.95CrossRefGoogle Scholar
  12. 12.
    S. Pekker, J. P. Salvetat, E. Jakab, J. M. Bonard and L. Forro, J. Phys. Chem. B. 105, 7938 (2001). doi:10.1021/jp010642oCrossRefGoogle Scholar
  13. 13.
    T. Nakajima, S. Kasamatsu and Y. Matsuo, Eur. J. Solid State Inorg. Chem. 33, 831 (1996).Google Scholar
  14. 14.
    M. A. Hamon, H. Hui, P. Bhowmik, H. M. E. Itkis and R. C. Haddon, Appl. Phys. A 74, 333 (2002). doi:10.1007/s003390201281CrossRefGoogle Scholar
  15. 15.
    J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund and R. C. Haddon, Science 282, 95 (1998). doi: 10.1126/science.282.5386.95CrossRefGoogle Scholar
  16. 16.
    W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon and P. J. Reucroft, Appl. Surf. Sci. 181, 121 (2001). doi: 10.1016 S0169-4332(01)00381-6CrossRefGoogle Scholar
  17. 17.
    J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley and J. M. Tour, J. Am. Chem. Soc. 123, 6536 (2001). doi:10.1021/ja010462sCrossRefGoogle Scholar
  18. 18.
    V. Georgakilas, D. Gournis, M. A. Karakassides, A. Bakandritsos and D. Petridis, Carbon 42, 865 (2004). doi:10.1016/j.carbon.2004.01.064CrossRefGoogle Scholar
  19. 19.
    N. Tagmatarchis, V. Georgakilas, M. Prato and H. Shinohara, Chem. Commun. 18, 2010 (2002). doi:10.1039/b204366aCrossRefGoogle Scholar
  20. 20.
    K. C. Hwang, Chem. Commun. 2, 173 (1995).CrossRefGoogle Scholar
  21. 21.
    D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu and R. E. Smalley, J. Am. Chem. Soc. 122, 2383 (2000). doi:10.1021/ja994094sCrossRefGoogle Scholar
  22. 22.
    H. Kong, C. Gao and D. Y. Yan, J. Am. Chem. Soc. 126, 412 (2004). doi:10.1021/ja0380493CrossRefGoogle Scholar
  23. 23.
    Y. Y. Xu, C. Gao, H. Kong, D. Y. Yan, Y. Z. Jin and P. C. P. Watts, Macromolecules 37, 8846 (2004). doi:10.1021/ma0484781CrossRefGoogle Scholar
  24. 24.
    H. Kong, W. W. Li, C. Gao, D. Y. Yan, Y. Z. Jin, D. R. M. Walton and H. W. Kroto, Macromolecules 37, 6683 (2004). doi:10.1021/ma048682oCrossRefGoogle Scholar
  25. 25.
    Q. Chen, L. Dai, M. Gao, S. Huang and A. Mau, J. Phys. Chem. B 105, 618 (2001). doi:10.1021/jp003385gCrossRefGoogle Scholar
  26. 26.
    J. Zhu, M. Yudasaka, M. Zhang, D. Kasuya and S. Iijima, Nano Lett. 3, 1239 (2003). doi:10.1021/nl034459dCrossRefGoogle Scholar
  27. 27.
    Z. Konya, I. Vesselenyi, K. Niesz, A. Kukovecz, A. Demortier, A. Fonseca, J. Delhalle, Z. Mekhalif, J. B. Nagy, A. A. Koos, Z. Osvath, A. Kocsonya, L. P. Biro and I. Kiricsi, Chem. Phys. Lett. 360, 429 (2002). doi:10.1016/S0009-2614(02)00900-4CrossRefGoogle Scholar
  28. 28.
    H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed. 40, 2004 (2001). doi:10.1002/1521-3773 (20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5CrossRefGoogle Scholar
  29. 29.
    V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem. Int. Ed. 41, 2596 (2002). doi:10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4CrossRefGoogle Scholar
  30. 30.
    J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev. 36, 1249 (2007). doi:10.1039/b613014nCrossRefGoogle Scholar
  31. 31.
    H. M. Li, F. Y. Cheng, A. M. Duft and A. Adronov, J. Am. Chem. Soc. 127, 14518 (2005). doi:10.1021/ja054958bCrossRefGoogle Scholar
  32. 32.
    H. M. Li and A. Adronov, Carbon 45, 984 (2007). doi:10.1016/j.carbon.2006.12.022CrossRefGoogle Scholar
  33. 33.
    J. Y. Liu, Z. H. Nie, Y. Gao, A. Adronov and H. M. Li, J. Polym. Sci. Part A: Polym. Chem. 46, 7187 (2008). doi:10.1002/pola.23026CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, H. H. He and C. Gao, Macromolecules 41, 9851 (2008).Google Scholar
  35. 35.
    Y. Zhang, H. H. He, C. Gao and J. Y. Wu, Langmuir 25, 5814 (2009). doi:10.1021/la803906sCrossRefGoogle Scholar
  36. 36.
    R. Voggu, P. Suguna, S. Chandrasekaran and C. N. R. Rao, Chem. Phys. Lett. 443, 118 (2007). doi:10.1016/j.cplett.2007.06.050CrossRefGoogle Scholar
  37. 37.
    H. H. He, Y. Zhang, C. Gao and J. Y. Wu, Chem. Commun. 13, 1655 (2009). doi:10.1039/b821280eCrossRefGoogle Scholar
  38. 38.
    Z. Guo, L. Liang, J. J. Liang, Y. F. Ma, X. Y. Yang, D. M. Ren, Y. S. Chen and J. Y. Zheng, J. Nanopart. Res. 10, 1077 (2008). doi:10.1007/s11051-007-9338-zCrossRefGoogle Scholar
  39. 39.
    S. Campidelli, B. Ballesteros, A. Filoramo, D. Diaaz, G. Torre, T. Torres, G. M. A. Rahman, C. Ehli, D. Kiessling, F. Werner, V. Sgobba, D. M. Guldi, C. Cioffi, M. Prato and J. P. Bourgoin, J. Am. Chem. Soc. 130, 11503 (2008). doi:10.1021/ja8033262CrossRefGoogle Scholar
  40. 40.
    T. Palacin, H. L. Khanh, B. Jousselme, P. Jegou, A. Filoramo, C. Ehli, D. M. Guldi and S. Campidell, J. Am. Chem. Soc. 131, 15394 (2009). doi:10.1021/ja906020eCrossRefGoogle Scholar
  41. 41.
    W. Lwowski, Nitrenes. (1970). Interscience. New York.Google Scholar
  42. 42.
    M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss and F. Jellen, Angew. Chem. Int. Ed. 40, 4002 (2001). doi:10.1002/1521-3773(20011105)40:21<4002::AID-ANIE4002>3.0.CO;2-8CrossRefGoogle Scholar
  43. 43.
    M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes and A. Hirsch, J. Am. Chem. Soc. 125, 8566 (2003). doi:10.1021/ja029931wCrossRefGoogle Scholar
  44. 44.
    M. Holzinger, J. Steinmetz, D. Samaille, M. Glerup, M. Paillet, P. Bernier, L. Ley and R. Graupner, Carbon 42, 941 (2004). doi:10.1016/j.carbon.2003.12.019CrossRefGoogle Scholar
  45. 45.
    S. Qin, D. Qin, W. T. Ford, D. E. Resasco and J. E. Herrera, Macromolecules 37, 752 (2004). doi:10.1021/ma035214qCrossRefGoogle Scholar
  46. 46.
    C. Gao, H. K. He, L. Zhou, X. Zheng and Y. Zhang, Chem. Mater. 21, 360 (2009). doi:10.1021/cm802704cCrossRefGoogle Scholar
  47. 47.
    L. Zhou, C. Gao and W. J. Xu, Macromol. Chem. Phys. 210, 1011 (2009). doi:10.1002/macp.200900134CrossRefGoogle Scholar
  48. 48.
    X. Wang, L. Zhou, C. Gao and Y. H. Xu, Acta Polym. Sinica 8, 717 (2009). doi:10.3724/SP.J.1105.2009.00717CrossRefGoogle Scholar
  49. 49.
    Y. Zhu, A. T. Peng, K. Carpenter, J. A. Maguire, N. S. Hosmane and M. Takagaki, J. Am. Chem. Soc. 127, 9875 (2005). doi:10.1021/ja0517116CrossRefGoogle Scholar
  50. 50.
    S. J. Pastine, D. Okawa, B. Kessler, M. Rolandi, M. Lorente, A. Zett and J. M. J. Frechet, J. Am. Chem. Soc. 130, 4238 (2008). doi:10.1021/ja8003446CrossRefGoogle Scholar
  51. 51.
    J. Iehl, R. P. Freitas, B. D. Nicot and J. F. Nierengarten, Chem. Commun. 21, 2450 (2008). doi:10.1039/b804393kCrossRefGoogle Scholar
  52. 52.
    K. Flavin, M. N. Chaur, L. Echegoyen and S. Giordani, Org. Lett. 12, 840 (2010). doi:10.1021/ol902939fCrossRefGoogle Scholar
  53. 53.
    M. Prato, Q. C. Li and F. Wudl, J. Am. Chem. Soc. 115, 1149 (1993).Google Scholar
  54. 54.
    G. Hammond, V. J. Kuck, Fullerenes Synthesis, Properties, and Chemistry of Large Carbon Cluster, ACS Symposium Series 481, American Chemical Society, Washington. DC, 1992.CrossRefGoogle Scholar
  55. 55.
    C. J. Hawker, Macromolecules 27, 4836 (1994). doi:10.1021/ma00095a027CrossRefGoogle Scholar
  56. 56.
    S. Delpeux, F. Beguin, R. Benoit, R. Erre, N. Manolova and I. Rashkov, Eur. Polym. J. 34, 905 (1998). doi: 10.1016/S0014-3057(97)00225-5CrossRefGoogle Scholar
  57. 57.
    P. Ravi, C. Wang, S. Dai and K. C. Tam, Langmuir 22, 7167 (2006). doi:10.1021/la0606345CrossRefGoogle Scholar
  58. 58.
    H. J. Fang, S. Wang, S. X. Xiao, Y. L. Li, Y. Liu, L. Z. Fan, Z. Q. Shi, C. Du and D. B. Zhu, Synth. Met. 128, 253 (2002). doi:10.1016/S0379-6779(01)00648-8CrossRefGoogle Scholar
  59. 59.
    M. Nanjo, P. W. Cyr, K. Liu, E. H. Sargent and I. Manners, Adv. Funct. Mater. 18, 470 (2008). doi:10.1002/adfm.200700315CrossRefGoogle Scholar
  60. 60.
    Y. Ederle and C. Mathis, Macromol. Rapid Commun. 19, 543 (1998). doi:10.1002/(SICI)1521-3927(19981101)19:11<543::AID-MARC543>3.0.CO;2-GCrossRefGoogle Scholar
  61. 61.
    X. F. Wang, Y. F. Zhang, Z. Y. Zhu and S. Y. Liu, Macromol. Rapid Commun. 29, 340 (2008). doi:10.1002/marc.200700811CrossRefGoogle Scholar
  62. 62.
    L. Zhou, C. Gao, D. D. Zhu, W. J. Xu, F. F. Chen, A. Palkar, L. Echegoyen and E. S. W. Kong, Chem. Eur. J. 15, 1389 (2009). doi:10.1002/chem.200801642CrossRefGoogle Scholar
  63. 63.
    S. Caterina, M. Ather and D. Erik, Carbon 48, 2127 (2010). doi:10.1016/j.carbon.2010.01.058CrossRefGoogle Scholar
  64. 64.
    K. Hyunwoo, A. Ahmeda and M. Christopher, Macromolecules. 43, 6515 (2010). doi:10.1021/ma100572eCrossRefGoogle Scholar
  65. 65.
    J. Choi, K. Kim, B. Kim, H. Lee and S. Kim, J. Phys. Chem. C 113, 9433 (2009). doi:10.1021/jp9010444CrossRefGoogle Scholar
  66. 66.
    H. K. He and C. Gao, Chem. Mater. 22, 5054 (2010). doi:10.1021/cm101634kCrossRefGoogle Scholar
  67. 67.
    L. Kou, H. K. He and C. Gao, Nano-Micro Lett. 2, 177 (2010).CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2010

Authors and Affiliations

  1. 1.MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouP. R. China

Personalised recommendations