Nano-Micro Letters

, Volume 2, Issue 3, pp 149–153 | Cite as

Optical absorption and photoelectron collection properties of silicon wafers with conical quantum nanocrystals structure

  • Yuriy Vashpanov
  • Jae-Il Jeong
Open Access


A conical form of nano-sized quantum cluster was formed on the surface of p-type crystalline silicon [111] wafer by anode electrochemical etching in HF-based solution. The conical surface is highly effective in absorbing sunlight and transporting photoelectrons to semiconductor material. These are because each cone has a graded band gap with the energy level in the range from 1.1 to 3 eV which can be considered as consisting of quantum dots in different sizes. Since the boron concentration on the surface of each cone gradually decreases from top to bottom, a continuously varying electrical field is created along the cone height. This electric field is forcing photoelectrons generated in the cone to move rapidly to the direction perpendicular to wafer surface. Hence the drift time of photoelectrons can be less than their recombination time within the thin layer close to the bottom of the cone.

Silicon Nanocrystals Electrochemical etching Solar cells 


  1. 1.
    M. McGehee Solar Cells in 2009 and beyond, (KAUST, 2009).Google Scholar
  2. 2.
    MRS Bulletin, Harnessing Mater. Energy 33, 355 (2008).Google Scholar
  3. 3.
    R. R. King, D. C. Law, K. M. Edmondson, C.M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007). doi:10.1063/1.2734507.CrossRefGoogle Scholar
  4. 4.
    C. J. Novotny, E. T. Yu and P. K. Yu, Nanolett. 8, 775 (2008). doi:10.1021/nl072372c.CrossRefGoogle Scholar
  5. 5.
    Eun-Chel Cho, Sangwook Park, Xiaojing Hao, Dengyuan Song, Gavin Conibeer, Sang-Cheol Park and M. A. Green, Nanotechnology 19, 245201 (2008). doi:10.1088/0957-4484/19/24/245201.CrossRefGoogle Scholar
  6. 6.
    Forum for solar cells:
  7. 7.
    G. Raushenbakh, The directory on designing of solar batteries, (in Russian, Moskow, Energoizdat, 1983).Google Scholar
  8. 8.
    V. V. Serdyuk, Physics of solar cells, (in Russian, Logos, Odessa, 1994).Google Scholar
  9. 9.
    N. Daldosso and L. Pavesi, Laser & Photon. Rev. 3, No. 6, 508 (2009). doi:10.1002/lpor.200810045.CrossRefGoogle Scholar
  10. 10.
    Bisi, S. Ossicini and L. Pavesi, Surf. Sci. Rep. 38, (2000).Google Scholar
  11. 11.
    Kwok K. Ng Complete guide to semiconductor devices, (McGraw Inc., International edition, 1995).Google Scholar
  12. 12.
    S. W. Jones Diffusion in silicon, (IC Knowledge LLC, 2000).Google Scholar
  13. 13.
    Nanophotonics Device Group:
  14. 14.
    W. G. Driscoll and W. Vaughan, Handbook of Optics, (MCGRAW-HILL Company, 1978).Google Scholar
  15. 15.
    Solar Radiation Hand Book (MNRE, Indian Metrological Department, 2008).Google Scholar
  16. 16.
    J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 2 556 (1976).CrossRefGoogle Scholar
  17. 17.
    A. L. Fahrenbruch and R. H. Bube, Fundamental of solar cells. Photovoltaic solar energy conversion, (New York, 1983).Google Scholar
  18. 18.
    M. A. Green, Physica E 14, 65 (2002). doi:10.1016/S1386-9477(02)00361-2.CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2010

Authors and Affiliations

  1. 1.Electrical and Computer Engineering Division of Hanyang Institute of TechnologyHanyang UniversitySeoulSouth Korea

Personalised recommendations