Advertisement

Nano-Micro Letters

, Volume 2, Issue 2, pp 121–125 | Cite as

Low-energy electronic states of carbon nanocones in an electric field

  • Jun-Liang Chen
  • Ming-Horng Su
  • Chi-Chuan Hwang
  • Jian-Ming Lu
  • Chia-Chang Tsai
Open Access
Article

Abstract

The low-energy electronic states and energy gaps of carbon nanocones in an electric field are studied using a single-π-band tight-binding model. The analysis considers five perfect carbon nanocones with disclination angles of 60°, 120°, 180°, 240° and 300°, respectively. The numerical results reveal that the low-energy electronic states and energy gaps of a carbon nanocones are highly sensitive to its geometric shape (i.e. the disclination angle and height), and to the direction and magnitude of an electric field. The electric field causes a strong modulation of the state energies and energy gaps of the nanocones, changes their Fermi levels, and induces zero-gap transitions. The energy-gap modulation effect becomes particularly pronounced at higher strength of the applied electric field, and is strongly related to the geometric structure of the nanocone.

Keywords

Low-energy electronic states Carbon Nanocones Electric field 

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991). doi:10.1038/354056a0.CrossRefGoogle Scholar
  2. 2.
    J. Liu, H. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. J. Tans and C. Dekker, Nature 385, 780 (1997). doi:10.1038/385780b0.CrossRefGoogle Scholar
  3. 3.
    S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai and K. Takahashi, Chem. Phys. Lett. 309, 165 (1999). doi:10.1016/S0009-2614(99)00642-9.CrossRefGoogle Scholar
  4. 4.
    M. Ge and K. Sattler, Chem. Phys. Lett. 220, 192 (1994). doi:10.1016/0009-2614(94)00167-7.CrossRefGoogle Scholar
  5. 5.
    J. C. Charlier and G. M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001). doi:10.1103/PhysRevLett.86.5970.CrossRefGoogle Scholar
  6. 6.
    S. P. Jordan and V. H. Crespi, Chem. Phys. Lett. 93, 255504 (2004).Google Scholar
  7. 7.
    M. Muñoz Navia, J. Dorantes-Dávila, M. Terrones and H. Terrones, Phys. Rev. B. 72, 235403 (2005). doi:10.1103/PhysRevB.72.235403.CrossRefGoogle Scholar
  8. 8.
    P. E. Lammert and V. H. Crespi, Phys. Rev. B 69, 035406 (2004). doi:10.1103/PhysRevB.69.035406.CrossRefGoogle Scholar
  9. 9.
    P. Kim, T. W. Odom, J. L. Huang and C. M. Lieber, Phys. Rev. Lett. 82, 1225 (1999). doi:10.1103/PhysRevLett.82.1225.CrossRefGoogle Scholar
  10. 10.
    T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, J. Phys. Chem. B 2794, 104 (2000).Google Scholar
  11. 11.
    N. G. Shang and X. Jiang, Appl. Phys. Lett. 87, 163102 (2005). doi:10.1063/1.2093919.CrossRefGoogle Scholar
  12. 12.
    J. A. Jaszczak, G. W. Robinson, S. Dimovski and Y. Gogotsi, Carbon 41, 2085 (2003). doi:10.1016/S0008-6223(03)00214-8Google Scholar
  13. 13.
    G. Zhang, X. Jiang and E. Wang, Science 300, 472 (2003). doi:10.1126/science.1082264.CrossRefGoogle Scholar
  14. 14.
    N. Muradov and A. Schwitter, Nano Lett. 2, 673 (2002). doi:10.1021/nl0255909.CrossRefGoogle Scholar
  15. 15.
    X. Zhou, H. Chen and O. Y. Zhong-can, J. Phys. Condensed Matter 13, 635 (2001). doi:10.1088/0953-8984/13/27/104.CrossRefGoogle Scholar
  16. 16.
    Y. H. Kim and K. J. Chang, Phys. Rev. B 64, 153404 (2001). doi:10.1103/PhysRevB.64.153404.CrossRefGoogle Scholar
  17. 17.
    J. O’Keeffe, C. Y. Wei and K. J. Cho, Appl. Phys. Lett. 80, 676 (2002). doi:10.1063/1.1432441.CrossRefGoogle Scholar
  18. 18.
    Y. Li, S. V. Rotkin and U. Ravaioli, Nano Lett. 3, 183 (2003). doi:10.1021/nl0259030.CrossRefGoogle Scholar
  19. 19.
    K. H. Khoo, M. S. C. Mazzoni and S. G. Louie, Phys. Rev. B 69, 201401 (2004). doi:10.1103/PhysRevB.69.201401.CrossRefGoogle Scholar
  20. 20.
    S. G. Kim, Y. H. Lee, P. Nordlander and D. Tománek, Chem. Phys. Lett. 264, 345 (1997). doi:10.1016/S0009-2614(96)01328-0.CrossRefGoogle Scholar
  21. 21.
    Y. H. Lee, S. G. Kim and D, Tománek, Chem. Phys. Lett. 265, 667 (1997). doi:10.1016/S0009-2614(96)01486-8.CrossRefGoogle Scholar
  22. 22.
    F. L. Shyu, C. C. Tsai, M. F. Lin and C. C. Hwang, J. Phys. Soc. Jpn. 75, 104710 (2006). doi:10.1143/JPSJ.75.104710.CrossRefGoogle Scholar
  23. 23.
    C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen and M. L. Lin, Phys. Rev. B 73, 144427 (2006). doi:10.1103/PhysRevB.73.144427.CrossRefGoogle Scholar
  24. 24.
    C. C. Tsai, F. L. Shyu, C. W. Chiu, C. P. Chang, R. B. Chen and M. F. Lin, Phys. Rev. B 70, 075411 (2004). doi:10.1103/PhysRevB.70.075411.CrossRefGoogle Scholar
  25. 25.
    C. Kittle, Quantum Theory of Solid, John Wiley & Sons, New York, 1987.Google Scholar
  26. 26.
    R. Saito, G. Dresselhaus, M. S. Dresshaus, Physical Properties of Carbon Nanotubes, Imperical College Press, London, 1998. doi:10.1142/9781860943799.CrossRefGoogle Scholar
  27. 27.
    M. Springborg and Method of Electronic-Structure Calculations, John Wiley & Sons, New York, 2000.Google Scholar
  28. 28.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). doi:10.1103/RevModPhys.81.109.CrossRefGoogle Scholar
  29. 29.
    C. Chen, C. C. Tsai, J. M. Lu and C. C. Hwang, J. Phys. Chem. B 110, 12384 (2006). doi:10.1021/jp056724k.CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2010

Authors and Affiliations

  • Jun-Liang Chen
    • 1
  • Ming-Horng Su
    • 2
  • Chi-Chuan Hwang
    • 3
  • Jian-Ming Lu
    • 4
  • Chia-Chang Tsai
    • 5
  1. 1.Department of Mechanical EngineeringWuFeng Institute of TechnologyTaiwan
  2. 2.Department of Fire ScienceWuFeng Institute of TechnologyTaiwan
  3. 3.Department of Engineering ScienceNational Cheng Kung UniversityTaiwan
  4. 4.Advanced Networking Business UnitNational Center for High-Performance Computing, National Applied Research LaboratoriesTaiwan
  5. 5.Institute of Atomic and Molecular Sciences, Academia SinicaTaiwan

Personalised recommendations