Advertisement

Nano-Micro Letters

, Volume 2, Issue 1, pp 22–25 | Cite as

Photovoltaic enhancement of Si solar cells by assembled carbon nanotubes

  • Y. F. Zhang
  • Y. F. Wang
  • N. Chen
  • Y. Y. Wang
  • Y. Z. Zhang
  • Z. H. Zhou
  • L. M. Wei
Open Access
Article

Abstract

Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes (SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm−2, an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.

Keywords

Solar cell Carbon nanotube Photovoltaic enhancement Heterojunction 

References

  1. 1.
    M. S. Dresselhaus and I. L. Thomas, Nature 414, 332 (2001). doi:10.1038/35104599CrossRefGoogle Scholar
  2. 2.
    M. Gratzel, Nature 414, 338 (2001). doi:10.1038/35104607CrossRefGoogle Scholar
  3. 3.
    J. Potocnik, Science 315, 810 (2007). doi:10.1126/science.1139086CrossRefGoogle Scholar
  4. 4.
    M. A. Green, Physica E 14, 65 (2002). doi:10.1016/S1386-9477(02)00361-2CrossRefGoogle Scholar
  5. 5.
    R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science 297, 787 (2002). doi:10.1126/science.1060928CrossRefGoogle Scholar
  6. 6.
    J. T. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999). doi:10.1021/ar9700365CrossRefGoogle Scholar
  7. 7.
    J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze and J. Tersoff, Science 300, 783 (2003). doi:10. 1126/science.1081294CrossRefGoogle Scholar
  8. 8.
    M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu and G. Gruner, Appl. Phys. Lett. 88, 233506 (2006). doi:10.1063/1.2209887CrossRefGoogle Scholar
  9. 9.
    E. Kymakis and G. A. Amaratunga, J. Appl. Phys. Lett. 80, 112 (2002). doi:10.1063/1.1428416CrossRefGoogle Scholar
  10. 10.
    A. Kongkanand, R. M. Dominguez and P. V. Kamat, Nano Lett. 7, 676 (2007). doi:10.1021/nl0627238CrossRefGoogle Scholar
  11. 11.
    A. J. Miller, R. A. Hatton, G. Y. Chen and S. R. P. Silva, Appl. Phys. Lett. 90, 023105 (2007). doi:10.1063/1.243 1437CrossRefGoogle Scholar
  12. 12.
    Q. K. Shu, J. Q. Wei, K. L. Wang, H. W. Zhu, Z. Li, Y. Jia, X. C. Gui, N. Guo, X. Li, C. Ma and D. H. Wu, Nano Lett. 9, 4338 (2009). doi:10.1021/nl902581kCrossRefGoogle Scholar
  13. 13.
    J. Q. Wei, Y. Jia, Q. K. Shu, Z. Gu, K. L. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao and D. H. Wu, Nano Lett. 7, 2317 (2007). doi:10.1021/nl070961cCrossRefGoogle Scholar
  14. 14.
    Y. Jia, J. Q. Wei, K. L. Wang, A. Y. Cao, Q. Shu, X. Cui, Y. Zhu, D. Zhuang, G. Zhang, B. Ma, L. Wang, W. Liu, Z. Wang, J. Luo and D. H. Wu, Adv. Mater. 20, 4594 (2008). doi:10.1002/adma.200801810CrossRefGoogle Scholar
  15. 15.
    N. M. Gabor, Z.H. Zhong, K. Rosnick, J. Park and P.L. McEuen, Science 325, 1367 (2009). doi:10.1126/science.1176112CrossRefGoogle Scholar
  16. 16.
    B. Z. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. Yu, J. Huang and C. M. Lieber, Nature 449, 885 (2007). doi:10.1038/nature06181CrossRefGoogle Scholar
  17. 17.
    Z. J. Li, L. Wang, Y. J. Su, Z. Yang, P. Liu and Y. F. Zhang, Nano-M. Lett. 1, 9 (2009). doi:10.1049/mnl:20080044CrossRefGoogle Scholar
  18. 18.
    M. C. LeMieux, M. Roberts, S. Barman, Y. W. Jin, J. M. Kim and Z. N. Bao, Science 321, 101 (2008). doi:10.1126/science.1156588CrossRefGoogle Scholar
  19. 19.
    Y. Y. Wang, Z. H. Zhou, Z. Yang, X. H. Chen, D. Xu and Y. F. Zhang, Nanotechnology 20, 345502 (2009). doi:10.1088/0957-4484/20/34/345502CrossRefGoogle Scholar
  20. 20.
    J. van de. Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola and P. Glatkowski, Appl. Phys. Lett. 88, 233503 (2006).CrossRefGoogle Scholar
  21. 21.
    R. J. Handy, Solid-State Elect. 10, 765 (1967). doi:10. 1016/0038-1101(67)90159-1CrossRefGoogle Scholar
  22. 22.
    K. Rajkanan and J. Shewchun, Solid-State Elect. 22, 193 (1979). doi:10.1016/0038-1101(79)90112-6CrossRefGoogle Scholar
  23. 23.
    L. D. Nielsen, IEEE T. Electron. Devices 29, 821 (1982). doi:10.1109/T-ED.1982.20784CrossRefGoogle Scholar
  24. 24.
    M. Wolf and H. Rauschenbach, Adv. Energy Conv. 3, 455. doi:10.1016/0365-1789(63)90063-8Google Scholar
  25. 25.
    J. H. Zhao, Sol. Energ. Mat. Sol. C 82, 53 (2004). doi:10.1016/j.solmat.2004.01.005CrossRefGoogle Scholar
  26. 26.
    A. Mette, D. Pysch, G. Emanuel, D. Erath, R. Preu, S. W. Glunz and Prog. Photovolt, Res. Appl. 15, 493 (2007). doi:10.1002/pip.755CrossRefGoogle Scholar
  27. 27.
    M. S. Sze, Physics of Semiconductors, 2nd ed. (John Willey, New York, 1981).Google Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2010

Authors and Affiliations

  • Y. F. Zhang
    • 1
  • Y. F. Wang
    • 1
  • N. Chen
    • 1
  • Y. Y. Wang
    • 1
  • Y. Z. Zhang
    • 1
  • Z. H. Zhou
    • 1
  • L. M. Wei
    • 1
  1. 1.Key laboratory for Thin Film and Microfabrication of the Ministry of Education, National Key Laboratory of Nano/Micro Fabrication Technology, Research Institute of Micro/Nano Science and TechnologyShanghai Jiao Tong UniversityShanghaiP R China

Personalised recommendations