Metallurgical Transactions A

, Volume 22, Issue 1, pp 235–249 | Cite as

The effects of interface attachment kinetics on solidification interface morphologies

  • R. Trivedi
  • J. T. Mason


The presence of an interface kinetic effect significantly influences microstructures that form during the solidification of alloys. In order to quantitatively evaluate the effect of interface kinetics on microstructure formation, critical directional solidification studies have been designed in the pivalic acid-ethanol (PVA-Eth) system, in which significant anisotropies in interface properties are present. The interface kinetic effect is studied in high-purity PVA by measuring the interface temperature of a planar interface which is growing under steady-state conditions. In a binary system of PV A-Eth, the interface kinetic effect is characterized by examining the variations in dendritic microstructural scales with velocity and composition and by examining the planar interface instability condition. The variations in the dendrite tip radius,R, the primary spacing, and the secondary arm spacing near the dendrite tip with velocity,V, as well as with composition, have been characterized. Experimental results at a given composition showedVR 2. to be constant, and those at constant velocity showed δT s R 2 to be constant, where δT s is the product of the liquidus slope and the concentration difference at the dendrite tip. In order to characterize the system properly, additional experiments were carried out to measure the liquidus temperatures of the system. These experimental results are then compared with the theoretical models of planar interface instability and of dendritic growth to evaluate the role of interface kinetics on microstructure formation. Based on the theoretical models for planar and dendritic growth in an anisotropic system, the results on the interface kinetic effects are analyzed to give an insight into the possible phenomena which contribute to the complex kinetic behavior that is observed experimentally in the PVA system.


Metallurgical Transaction Planar Interface Primary Spacing Pivalic Acid Succinonitrile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.C. Flemings:Solidification Processing. McGraw-Hill. New York, NY, 1974.Google Scholar
  2. 2.
    W. Kurz and D.J. Fisher:Fundamentals of Solidification, Trans Tech Publications, Ltd., Aedermannsdorf, Switzerland, 1986.Google Scholar
  3. 3.
    G.P. Ivantsov:Dokl. Akad. Nauk SSSR, 1947, vol. 58, pp. 567–69.Google Scholar
  4. 4.
    D.E. Temkin:Sov. Phy. Dokl., 1960, vol. 5, pp. 609–12.Google Scholar
  5. 5.
    R. Trivedi:Acta Metall., 1970, vol. 18, pp. 287–96.CrossRefGoogle Scholar
  6. 6.
    M.E. Glicksman, R.J. Schaefer, and J.D. Ayers:Metall. Trans. A, 1976, vol. 7A, pp. 1747–59.CrossRefGoogle Scholar
  7. 7.
    J.S. Langer and H. Müller-Krumbhaar:Acta Metall., 1978, vol. 26, pp. 1681–90.CrossRefGoogle Scholar
  8. 8.
    J.D. Hunt: inSolidification and Casting of Metals, The Metals Society, London, 1979, Book 192, pp. 3–9.Google Scholar
  9. 9.
    S.-C. Huang and M.E. Glicksman:Acta Metall., 1981, vol. 29, pp. 701–15.CrossRefGoogle Scholar
  10. 10.
    S.-C. Huang and M.E. Glicksman:Acta Metall., 1981, vol. 29, pp. 717–34.CrossRefGoogle Scholar
  11. 11.
    M.E. Glicksman and N.B. Singh: ASTM STP 890, ASTM, Philadelphia, PA, 1986, pp. 44–61.Google Scholar
  12. 12.
    R. Trivedi:J. Cryst. Growth, 1980, vol. 49, pp. 219–32.CrossRefGoogle Scholar
  13. 13.
    D. Meiron:Phys. Rev., 1986, vol. 33A, pp. 2704–15.CrossRefGoogle Scholar
  14. 14.
    A. Barbieri, D.C. Hong, and J.S. Langer:Phys. Rev., 1987, vol. A35, pp. 1802–08.CrossRefGoogle Scholar
  15. 15.
    P. Pelcé and Y. Pomeau:Stud. Appl. Math., 1986, vol. 74, pp. 245–58.Google Scholar
  16. 16.
    D. Kessler and H. Levine:Phys. Rev. Lett., 1986, vol. 57, pp. 3069–72.CrossRefGoogle Scholar
  17. 17.
    P. Pelcé: University of Provence, Marseilles, France, unpublished research, 1989.Google Scholar
  18. 18.
    K. Somboonsuk, J.T. Mason, and R. Trivedi:Metall. Trans. A, 1984, vol. 15A, pp. 967–75.CrossRefGoogle Scholar
  19. 19.
    R. Trivedi and K. Somboonsuk:J. Mater. Sci. Eng., 1984, vol. 65, pp. 65–74.CrossRefGoogle Scholar
  20. 20.
    H. Esaka and W. Kurz:J. Cryst. Growth, 1985, vol. 72. p. 578.CrossRefGoogle Scholar
  21. 21.
    R. Trivedi, V. Seetharaman, and M.E. Eshelman:Metall. Trans. A, in press.Google Scholar
  22. 22.
    M. Brissaud-Lancin, C. Marhic, and A. Riviere:Phil. Mag., 1986, vol. 53, pp. 61–72.CrossRefGoogle Scholar
  23. 23.
    J.T. Mason and M.E. Eshelman: IS-4906, Ames Laboratory, Ames, lA, 1984.Google Scholar
  24. 24.
    H. Esaka: D.Sc. Thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland, 1985.Google Scholar
  25. 25.
    G.V. Smith, W.A. Tiller, and J.W. Rutter:Can. J. Phys., 1956, vol. 33, pp. 723–45.CrossRefGoogle Scholar
  26. 26.
    M.E. Eshelman, V. Seetharaman, and R. Trivedi:Acta Metall., 1988, vol. 36, pp. 1165–74.CrossRefGoogle Scholar
  27. 27.
    D.G. McCartney and J.D. Hunt:Acta Metall., 1981, vol. 29, pp. 1851–60.CrossRefGoogle Scholar
  28. 28.
    J.T. Mason, J.D. Verhoeven, and R. Trivedi:J. Cryst. Growth, 1982, vol. 59, pp. 516–24.CrossRefGoogle Scholar
  29. 29.
    J.C. Baker and J.W. Cahn: inSolidification, ASM, Metals Park, OH, 1971, pp. 23–58.Google Scholar
  30. 30.
    P. Pelcé: University of Provence, Marseilles, France, private communication, 1989.Google Scholar
  31. 31.
    R. Trivedi:J. Cryst. Growth, 1980, vol. 48, pp. 93–99.CrossRefGoogle Scholar
  32. 32.
    M.E. Glicksman: inFundamentals of Solidification and Materials Processing, R. Trivedi, J.A. Sekhar, and J. Mazumdar, eds., The IBH and Oxford Press, Ncw Delhi, India, 1989, pp. 11–31.Google Scholar
  33. 33.
    W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1964, vol. 35, pp. 444–51.CrossRefGoogle Scholar
  34. 34.
    S.R. Coriell and R.F. Sekerka:J. Cryst. Growth, 1976, vol. 34, pp. 157–63.CrossRefGoogle Scholar
  35. 35.
    W. Kurz: Swiss Federal Institute of Technology, Lausanne, Switzerland, private communication, 1989.Google Scholar
  36. 36.
    S. Kondo and T. Oda:Bull. Chem. Soc. Jpn., 1954. vol. 27, pp. 567–70.CrossRefGoogle Scholar
  37. 37.
    R.L. Jackson and J.H. Strange:Mol. Phys., 1971, vol. 22, pp. 313–23.CrossRefGoogle Scholar
  38. 38.
    R. Trivedi:Metall. Trans. A, 1984, vol. 15A, pp. 977–82.CrossRefGoogle Scholar
  39. 39.
    M.A. Eshelman: Ph.D. Thesis, Iowa State University, Ames. IA, 1987.Google Scholar
  40. 40.
    E.R. Rubinstein and M.E. Glicksman:J. Cryst. Growth, in press.Google Scholar
  41. 41.
    E.R. Rubinstein and M.E. Glicksman:J. Cryst. Growth, in press.Google Scholar
  42. 42.
    V. Seetharaman, L.M. Fabietti, and R. Trivedi:Metall. Trans. A, 1989, vol. 20A, pp. 2567–70.CrossRefGoogle Scholar
  43. 43.
    M.A. Chopra, M.E. Glicksman. and N.B. Singh:Metall. Trans. A, 1988, vol. 19A, pp. 3087–96.CrossRefGoogle Scholar
  44. 44.
    N.B. Singh and M.E. Glicksman:J. Cryst. Growth, 1989. vol. 98, pp. 534–40.CrossRefGoogle Scholar
  45. 45.
    A. Dougherty and J. Gollub:Phys. Rev., 1988, vol. A38, pp. 3043–46.CrossRefGoogle Scholar
  46. 46.
    J.H. Bilgram, M. Firmann, and E. Hurlimann:J. Cryst. Growth, 1989, vol. 96, pp. 175–87.CrossRefGoogle Scholar
  47. 47.
    G. Horvay and J.W. Cahn:Acra Metall., 1961, vol. 9, p. 697.Google Scholar
  48. 48.
    R. Trivedi:Acta Metall., 1970, vol. 18, pp. 287–96.CrossRefGoogle Scholar

Copyright information

© American Society for Metals, The Melallurgical Society of AIME 1975

Authors and Affiliations

  • R. Trivedi
    • 1
  • J. T. Mason
    • 1
  1. 1.Ames Laboratory, United States Department of Energy and the Department of Materials Science and EngineeringIowa State UniversityAmes

Personalised recommendations