Advertisement

Journal of Endocrinological Investigation

, Volume 22, Issue 2, pp 134–140 | Cite as

Three-month treatment with metformin or dexfenfluramine does not modify the effects of diet on anthropometric and endocrine-metabolic parameters in abdominal obesity

  • S. E. Oleandri
  • M. Maccario
  • R. Rossetto
  • M. Procopio
  • S. Grottoli
  • E. Avogadri
  • C. Gauna
  • C. Ganzaroli
  • E. Ghigo
Original Article

Abstract

Abdominal obesity is connoted by hyperinsulinism and insulin insensitivity, a trend toward glucose intolerance, hypoactivity of GH/IGF-I axis and alterations of hypothalamo-pituitary-adrenal (HPA) axis. It has been hypothesized that treatment with metformin (MET) and dexfenfluramine (DEX) could counteract those endocrine- metabolic alterations. Thus, we studied the effects of 3-month treatment with MET or DEX on anthropometric (BMI, WHR, FM and FFM), metabolic (basal and OGTT-induced glucose) and hormonal variables (IGF-I, DHEA-S, androstendione, testosterone, fT3, fT4, TSH, basal and OGTT-induced insulin) as well as on blood pressure in 28 normotensive patients with abdominal obesity (OB, 3 M, 25 F; 47.5±1.5 yr [mean±SE], BMI 35.4±1.1 kg/m2, WHR 0.98±0.04 and 0.86±0.07, in M and F, respectively). All patients were on balanced hypocaloric diet (1400 Kcal/day). Patients were randomly assigned to treatment with MET (no.=10, 500 mg twice daily po) or DEX (no.=10, 15 mg thrice daily po) or placebo (no.=8). Before treatment all groups had similar anthropometric, metabolic and hormonal values. After 3-month treatment with MET, DEX or placebo, weight, BMI and WHR reductions were similar in all groups (p<0.05 vs baseline in either group). In each group FFM/FM ratio showed non significant trend toward increase. No significant variations in metabolic and endocrine variables were recorded in each group after 1 and 3-month treatment. However, glucose tolerance, OGTT-induced insulin response, glucose/ insulin ratio showed a similar trend toward improvement in all groups, while IGF-I, 24 h urinary cortisol, DHEA-S, androstendione, testosterone, thyroid hormone and TSH levels did not show any variation. Significant (p<0.02) and similar reductions of DBP, but not of SBP, levels were found in all groups. In conclusion, our findings demonstrate that, at least after 3-month treatment, metformin and dexfenfluramine do not modify the effects of diet on anthropometric, metabolic and hormonal parameters as well as on blood pressure in patients with abdominal obesity.

Key-words

Obesity metformin dexfenfluramine glucose insulin IGF-I DHEA-S blood pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National Institute of Health Consensus Development Panel on the health implications of obesity. Consensus Conference Statement. Ann. Int. Med. 103: 1073, 1985.CrossRefGoogle Scholar
  2. 2.
    Caro J.F. Insulin resistance in obese and nonobese man. J. Clin. Endocrinol. Metab. 73: 691, 1991.PubMedCrossRefGoogle Scholar
  3. 3.
    De Fronzo R.A., Ferranini E. Insulin Resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14: 3, 1991.Google Scholar
  4. 4.
    Letiexhe M.R., Scheen A.J., Gérard P.L., Desaive C., Lefebvre P.J. Postgastroplasty recovery of ideal body weight normalizes glucose and insulin metabolism in obese women. J. Clin. Endocrinol. Metab. 80: 364, 1995.PubMedGoogle Scholar
  5. 5.
    Guy-Grand B., Crepaldi G., Lefebvre P., Apfelbaum M., Gries A., Turner P. International trial of long-term dexfenfluramine in obesity. Lancet ii: 1142, 1989.CrossRefGoogle Scholar
  6. 6.
    Scheen A.J., Letiexhe M.R., Lefèbvre P.J. Effects of metformin in obese patients with impaired glucose tolerance. Diabetes Metab. Rev. 11: S70, 1995.CrossRefGoogle Scholar
  7. 7.
    Reaven G.M. Effect of metformin on various aspects of glucose, insulin and lipid metabolism in patients with non-insulin-dependent diabetes mellitus with varying degrees of hyperglycemia. Diabetes Metab. Rev. 11: 97, 1995.CrossRefGoogle Scholar
  8. 8.
    Blundell J.E. Serotonin and the biology of feeding. Am. J. Clin. Nutr. 55: 155S, 1992.PubMedGoogle Scholar
  9. 9.
    Pijl H., Koppeschaar H.P.F., Willekens L.A., Frolich F., Meinders E. The influence of serotonergic neurotransmission on pituitary hormone release in obese and non-obese females. Acta Endocrinol. (Copenh.) 128: 319, 1993.Google Scholar
  10. 10.
    Muller E.E., Nisticò G. Brain messengers and the pituitary. Academic Press, New York, 1989, p. 98.Google Scholar
  11. 11.
    Lee A.J. Metformin in non insulin-dependent diabetes mellitus. Pharmacotherapy 16, 31: 327, 1996.Google Scholar
  12. 12.
    Bailey C.J. Biguanides and NIDDM. Diabetes Care 45: 755, 1992.CrossRefGoogle Scholar
  13. 13.
    De Fronzo R., Barzilai S., Simonson D.L. Mechanism of metformin action in obese and lean non insulin-dependent diabetic subjects. J. Clin. Endocrinol. Metab. 73: 1294, 1991.CrossRefGoogle Scholar
  14. 14.
    Bailey C.J. Metformin and intestinal glucose handling. Diabetes Metab. Rev. 11: S23, 1995.PubMedCrossRefGoogle Scholar
  15. 15.
    Del Prato S., Marchetto S., Pipitone A., Zanon M., de Kreutzenberg S.V., Tiengo A. Metformin and free fatty acid metabolism. Diabetes Metab. Rev. 11: 533, 1995.CrossRefGoogle Scholar
  16. 16.
    Rouru J., Pesonen U., Koulu M., Huupponem R., Santti E., Virtanen K., Jhanwar-Uniyal M. Anorectic effect of metformin in obese zucher rats. Lack of evidence for the involment of neuropeptide Y. Eur. J. Pharm. 273: 99, 1995.CrossRefGoogle Scholar
  17. 17.
    Giugliano D., De Rosa N., Di Mario G., Marfella R., Acampera R., Buoninconti R., D’Onofrio F. Metformin improves glucose, lipid metabolism, and reduces blood pressure in hypertensive, obese women. Diabetes Care 16: 1378, 1993.CrossRefGoogle Scholar
  18. 18.
    Landin K., Teng Born L., Smith U. Treating insulin resistance in hypertension with metformin reduces both blood pressure and metabolic risk factors. J. Intern. Med. 229: 181, 1991.PubMedCrossRefGoogle Scholar
  19. 19.
    Guy-Grand B. Clinical studies with d-fenfluramine. Am. J. Clin. Nutr. 55: 173S, 1992.PubMedGoogle Scholar
  20. 20.
    Garattini S., Bizzi A., Codegoni A.M., Caccia S., Mennini T. Progress report on the anorexia induced by drugs believed to mimic some of the effects of serotonin on the central nervous system. Am. J. Clin. Nutr. 55: 160, 1992.Google Scholar
  21. 21.
    McCann U.D., Seiden L.S., Rubin L.J., Ricaurte G.A. Brain serotonin neurotoxicity and primary pulmonary hypertension from fenfluramine and dexfenfluramine. JAMA 278: 666, 1997.PubMedCrossRefGoogle Scholar
  22. 22.
    Bremer J.M., Scott R.S., Lintott C. Dexfenfluramine reduces cardiovascular risk factors. Int. J. Ob. 18: 199, 1994.Google Scholar
  23. 23.
    Scheen A.J., Paolisso G., Salvatore T., Lefébvre P.J. Improvement of insulin-induced glucose disposal in obese patients with NIDDM after 1-wk treatment with d-fenfluramine. Diabetes Care 14: 325, 1991.PubMedCrossRefGoogle Scholar
  24. 24.
    Verdy M., Charbonneau L., Verdy I., Belanger R., Bolte E., Chiasson J.L. Fenfluramine in the treatment of non-insulin-dependent diabetics: hypoglycemic versus anorectic effect. Int. J. Obes. 7: 289, 1983PubMedGoogle Scholar
  25. 25.
    Bernini G.P., Argenio G.F., Vivaldi M.S., Del Corso C., Birindelli R., Luisi M., Franchi F. Impaired growth hormone response to insulin-induced hypoglycaemia in obese patients: restoration blocked by ritanserin after fenfluramine administration. Clin. Endocrinol. (Oxf.) 32: 453, 1990.CrossRefGoogle Scholar
  26. 26.
    Medeiros-Neto G., Lima N., Perozim L., Pedrinola F., Wajchenberg L. The effect of hypocaloric diet with and without dfenfluramine treatment on growth hormone release after growth hormone-releasing factor stimulation in patients with android obesity. Metabolism 43: 969, 1994.PubMedCrossRefGoogle Scholar
  27. 27.
    Schurmeyer T.H., Brademann G., von zur Muhlen A. Effect of fenfluramine on episodic ACTH and cortisol secretion. Clin. Endocrinol. (Oxf.) 45: 39, 1996.CrossRefGoogle Scholar
  28. 28.
    Veldhuis J.D., Iranmanesh A., Ho K.K.Y., Waters M.J., Johnson M.L., Lizarralde G. Dual effects in pulsatile growth hormone secretion and clearance subserve the hyposomatotropism of obesity in man. J. Clin. Endocrinol. Metab. 72: 51, 1991.PubMedCrossRefGoogle Scholar
  29. 29.
    Smith S.R. The endocrinology of obesity. Endocrinol. Metab. Clin. North Am. 25: 921, 1996.PubMedCrossRefGoogle Scholar
  30. 30.
    Pasquali R., Cantobelli S., Casimirri F., Capelli M., Bortoluzzi F., Flamia R., Morselli-Labate A.M., Barbara L. The hypothalamic-pituitary-adrenal axis in obese women with different patterns of body fat distribution. J. Clin. Endocrinol. Metab. 77: 341, 1993.PubMedGoogle Scholar
  31. 31.
    Crepaldi G., Belfiore F., Bosello O., Caviezel F., Contaldo F., Enzi G., Melchionda G. Consensus Conference Italiana: sovrappeso, obesità e salute. (CCI S.O.S ′91). Ann. Ital. Med. Int. 6: 349, 1991.Google Scholar
  32. 32.
    Nestler J.E., Beer N.A., Jakubowicz D.J., Beer R.M. Effects of a reduction in circulating insulin by metformin on serum dehydroepiandrosterone sulfate in nondiabetic men. J. Clin. Endocrinol. Metab. 78: 549, 1994.PubMedGoogle Scholar
  33. 33.
    Fendri S., Debussche X., Puy H., Vincent O., Marcelli J.M., Debreuil A., Lalau J.D. Metformin effects on peripheral sensitivity to insulin in non diabetic obese subjects. Diabet. Metab. 19: 245, 1993.Google Scholar
  34. 34.
    Gudbjornsdottir S., Friberg P., Elam M., Atvall S., Lonnroth P., Wallin B.G. The effect of metformin and insulin on sympathetic nerve activity, norepinephrine spillover and blood pressure in obese, insulin resistant, normoglycemic, hypertensive men. Blood Pressure 3: 394, 1994.PubMedCrossRefGoogle Scholar
  35. 35.
    Ditschueit H.H., Flechtner-Mors M., Dolderer M., Fulda U., Ditscuneit H. Endocrine and metabolic effects of dexfenfluramine in patients with android obesity. Horm. Metab. Res. 25: 573, 1993.CrossRefGoogle Scholar
  36. 36.
    Pestell R.G., Crock P.A., Ward G.M., Alford F.P., Best J.D. Fenfluramine increases insulin action in patients with NIDDM. Diabetes Care 12: 252, 1989.PubMedCrossRefGoogle Scholar
  37. 37.
    Tchernof A., Despres J.P., Belanger A., Dupont A., Prud’Homme D., Moorjani S., Lupien P.J., Labrie F. Reduced testosterone and adrenal C19 steroid levels in obese men. Metabolism 44: 513, 1995.PubMedCrossRefGoogle Scholar
  38. 38.
    Copeland K.C., Colletti R.B., Devlin J.T., McAuliffe T.L. The relationship between insulin-like growth factor- I, adiposity, and aging. Metabolism 39: 584, 1990.PubMedCrossRefGoogle Scholar
  39. 39.
    Phillips G.B. Relationship between serum sex hormones and glucose- insulin-lipid defect in men with obesity. Metabolism 42: 116, 1993.PubMedCrossRefGoogle Scholar
  40. 40.
    Caufriez A., Golstein J., Lebrun P., Herchuelz A., Furlanetto R., Copinschi G. Relations between immunoreactive somatomedin C, insulin and T3 patterns during fasting in obese subjects. Clin. Endocrinol. (Oxf.) 20: 65, 1984.CrossRefGoogle Scholar
  41. 41.
    Azziz R., Zacur H.A., Parker C.R. Jr., Bradley E.L. Jr., Boots L.R. Effect of obesity on the response to acute adrenocorticotropin stimulation in eumenorrhoic women. Fertil. Steril. 56: 427, 1991.PubMedGoogle Scholar
  42. 42.
    Barrett-Connor E., Ferrara A. Dehydroepiandrosterone, dehydroepiandrosterone sulfate, obesity, waist-hip ratio, and noninsulin-dependent diabetes in postmenopausal women: the Rancho Bernardo Study. J. Clin. Endocrinol. Metab. 81: 59, 1996.Google Scholar
  43. 43.
    Hochberg Z., Hertz P., Colin V., Ish-shalom S., Yeshurun D., Youdim M.B.H., Amit T. The distal axis of growth hormone (GH) in nutritional disorder: GH-binding protein, insulin-like growth factor- I (IGF-I), and IGF-I receptors in obesity and anorexia nervosa. Metabolism 41: 106, 1992.PubMedCrossRefGoogle Scholar
  44. 44.
    Tchernof A., Labrie F., Bélanger A., Després J.P. Obesity and metabolic complications: contribution of dehydroepiandrosterone and other steroid hormones. Endocrinology 150: S155, 1996.Google Scholar
  45. 45.
    Nestler J.E., Clore J.N., Strauss J.F., Blackard W.G. The effect of hyperinsulinemia on serum testosterone, progesterone, dehyepiandrosterone sulfate, and cortisol levels in normal women and in a woman with hyperandrogenism, insulin resistance, and acanthosis nigricans. J. Clin. Endocrinol. Metab. 64: 180, 1987.PubMedCrossRefGoogle Scholar
  46. 46.
    Houston B., O’Neil I.E. Insulin and growth hormone act synergistically to stimulate insulin-like growth factor-I production by cultered chicken hepatocytes. J. Endocrinol. 128: 389, 1991.PubMedCrossRefGoogle Scholar
  47. 47.
    Nestler J.E., McClanahan, Clore J.N., Blackard W.G. Insulin inhibits adrenal 17, 20-lyase activity in man. J. Clin. Endocrinol. Metab. 74: 362, 1992.PubMedGoogle Scholar
  48. 48.
    Clemmons D.R., Van Wyk J.J. Factors controlling blood concentrations of somatomedin C. J. Clin. Endocrinol. Metab. 13: 113, 1984.CrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1999

Authors and Affiliations

  • S. E. Oleandri
    • 1
  • M. Maccario
    • 1
  • R. Rossetto
    • 1
  • M. Procopio
    • 2
  • S. Grottoli
    • 3
  • E. Avogadri
    • 1
  • C. Gauna
    • 1
  • C. Ganzaroli
    • 1
  • E. Ghigo
    • 1
  1. 1.Divisione di Endocrinologia, Dipartimento di Medicina Interna, Ospedale MolinetteUniversità di TorinoTorinoItaly
  2. 2.Divisione di EndocrinologiaOspedale S. CroceCuneoItaly
  3. 3.Divisione di Medicina InternaOspedale SS. AnnunziataSaviglianoItaly

Personalised recommendations