Journal of Endocrinological Investigation

, Volume 12, Issue 8, pp 511–516 | Cite as

Evaluation of metabolic status in amiodarone-induced thyroid disorders: plasma coenzyme Q10 determination

  • A. Mancini
  • L. De Marinis
  • F. Calabrò
  • R. Sciuto
  • A. Oradei
  • S. Lippa
  • S. Sandric
  • G. P. Littarru
  • A. Barbarino


In previous works we have demonstrated that Coenzyme Q10 (CoQ10) levels have a significant inverse correlation with thyroid hormone concentration in patients with spontaneous hyper- or hypothyroidism. In order to verify whether this correlation is maintained in patients on long-term amiodarone therapy, in whom thyroid metabolism is altered by the iodine contained in the drug, we have studied 30 patients with thyroid dysfunction induced by chronic amiodarone treatment. We have distinguished four groups of patients: group A (n = 8): patients with true hyperthyroidism induced by drug administration; group B (n = 11): patients with mild hyperthyroid symptoms, but isolated thyroxine increase or dissociation between different indexes of thyroid function; group C (n = 5): patients with normal thyroid hormone levels, but increased TSH levels; group D (n = 6): patients who appeared really clinically euthyroid, with normal thyroid hormone levels and normal TSH response to TRH. In group A patients, plasma CoQ10 levels averaged 0.49 ± 0.03 μg/ml, significantly lower than those in normal subjects and similar to those observed in spontaneous hyperthyroid patients. In group B patients, CoQ10 levels were in the normal range (0.88 ± 0.10 μg/ml). In group C patients, CoQ10 levels were lower than those in normal subjects and similar to those of group A patients (0.49 ± 0.04 μg/ml); they differed, in regards to CoQ10 values, in comparison with spontaneous primary hypothyroid patients, who had very high levels of plasma CoQ10. Finally, in group D patients, CoQ10 levels were in the normal range (0.77 ± 0.04 μg/ml). The present investigation demonstrated that, in patients on amiodarone treatment, CoQ10 levels correlated better with metabolic status than with thyroid hormone levels; CoQ10 determination could be useful in discriminating ‘true’ from ‘pseudo’-hyperthyroid conditions, due to a contaminating effect of the iodinerepleted drug amiodarone.


Coenzyme Q10 amiodarone iodine thyroid hormones thyrotropin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burger A., Dininchert D., Nicod P., Jenny M., Lemarchand-Beraud T., Vallotton M.B. Effect of amiodarone on serum triiodothyronine, reverse triiodothyronine, thyroxine and thyrotropin. A drug influencing peripheral metabolism of thyroid hormones. J. Clin. Invest. 58: 255, 1976.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Sogol P.B., Hershman J.M., Reed A.W., Dillman W.H. The effects of amiodarone on serum thyroid hormones and hepatic thyroxine 5′-monodeiodination in rats. Endocrinology 113: 1464, 1983.PubMedCrossRefGoogle Scholar
  3. 3.
    Franklyn J.A., Davis J.R., Gammage M.D., Littler W.A., Ramsden D.B., Sheppard M.C. Amiodarone and thyroid hormone action. Clin. Endocrinol. (Oxf.) 22: 257, 1985.CrossRefGoogle Scholar
  4. 4.
    Martino E., Aghini-Lombardi F., Macchia E., Lenziardi M., Pacchiarotti A., Grasso L., Odoguardi L., Baschieri L., Braverman L.E., Pinchera A. Amiodarone-iodine-induced-thyrotoxicosis. Ital. J. Med. 4: 36, 1986.Google Scholar
  5. 5.
    Martino E., Aghini-Lombardi F., Mariotti S., Bartalena L., Braverman L.E., Pinchera A. Amiodarone: a common source of iodine-induced thyrotoxicosis. Horm. Res. 26: 158, 1987.PubMedCrossRefGoogle Scholar
  6. 6.
    Ogura F., Morii H., Ohno M., Ueno T., Kitabatake J., Hamada N., Ito K. Serum Coenzyme Q10 levels in thyroid disorders. Horm. Metab. Res. 12: 537, 1980.PubMedCrossRefGoogle Scholar
  7. 7.
    Mancini A., De Marinis L., Calabrò F., Oradei A., Lippa S., Littarru G.P., Barbarino A., Folli G. La determinazione del coenzima Q10 plasmatico nella fisiopatologia e diagnostica delle patologie tiroidee. Riv. It. Biol. Med. 7: 44, 1987.Google Scholar
  8. 8.
    Depierre J.W., Ernster L. Enzyme topology of intracellular membranes. Ann. Rev. Biochem. 46: 201, 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Langsjoen P.H., Vadhanavikit S., Folkers K. Effective treatment with coenzyme Q10 of patients with chronic myocardial disease. Drugs Expl. Clin. Res. 11: 577, 1985.Google Scholar
  10. 10.
    De Marinis L., Mancini A., Masala R., Torlontano M., Sandric S., Barbarino A. Evaluation of pituitary-thyroid axis response to acute myocardial infarction. J. Endocrinol. Invest. 8: 507, 1985.PubMedCrossRefGoogle Scholar
  11. 11.
    Lippa S., Littarru G.P., Oradei A. Determinazione routinaria del coenzima Q10 mediante HPLC in campioni biologici. 1a Conferenza Nazionale su “La cromatografia liquida ad alta risoluzione ed Analitica clinica: situazione attuale e prospettive”, Verona, 1985, p. 51 (abstract).Google Scholar
  12. 12.
    Krenning E.P., Dolter R., Bernard B., Visser T., Henneman G. Decreased transport of thyroxine (T4), 3-3′ 5-triiodothyronine (T3) and 3,3′, 5′-triiodothyronine (rT3) into rat hepatocytes in primary culture due to a decrease of cellular ATP content and various drugs. FEBS Lett. 140: 229, 1982.PubMedCrossRefGoogle Scholar
  13. 13.
    Melmed S., Koonlawee N., Reed A.W., Hendrickson J.A., Singh B.N., Hershmann J.M. Hyperthyroxinemia with bradycardia and normal thyrotropin secretion after chronic amiodarone administration. J. Clin. Endocrinol. Metab. 53: 997, 1981.PubMedCrossRefGoogle Scholar
  14. 14.
    Silva J.E., Larsen P.R. Contributions of plasma triiodothyronine and local thyroxine monodeiodination of nuclear triiodothyronine receptor saturation in pituitary, liver and kidney of hyperthyroid rats. Further evidence relating saturation of pituitary nuclear triiodothyronine receptor and the acute inhibition of thyroid stimulating hormone release. J. Clin. Endocrinol. Metab. 61: 1247, 1978.Google Scholar
  15. 15.
    Jaggarao N.S.V., Sheldon J., Grundy E.N., Vincent R., Chamberlain D.A. The effects of amiodarone on thyroid function. Postgrad. Med. J. 58: 693, 1982.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Peter T., Hamer A., Mandel W.J., Weiss D. Evaluation of amiodarone therapy in the treatment of drug resistent cardiac arrhythmias. Long term follow up. Am. Heart J. 106: 343, 1983.Google Scholar
  17. 17.
    Martino E., Aghini-Lombardi F., Lippi F., Lenziardi M., Capellini A., Safran M., Braverman L.E., Baschieri L., Pinchera A. La captazione tiroidea del I131 nelle diverse forme di ipertiroidismo da amiodarone. Minerva Endocrinol. 10: 1, 1985.PubMedGoogle Scholar
  18. 18.
    Bagnasco M., Chimini G., Croci R., Caputo M, Biassoni P. Sex hormone binding globulin (SHBG) radioassay in patients with initial thyroid failure. J. Nucl. Med. Allied Sci. 26: 161, 1982.PubMedGoogle Scholar
  19. 19.
    Balzano S., Bonomo P., Sica V., Cherchi A., Martino E. Valutazione del picco notturno del TSH sierico in un gruppo di pazienti trattati cronicamente con amiodarone. Atti delle Quinte Giornate Italiane della Tiroide, Parma, 4–6 novembre 1987, p. 58 (abstract).Google Scholar
  20. 20.
    Gammage M.D., Franklyn J.A. Amiodarone and the thyroid. Br. J. Clin. Pract. 40: (Suppl. 4): 67, 1986.Google Scholar
  21. 21.
    Mortensen S.A., Vadhanavikit S., Baandrup U., Folkers K. Long-term coenzyme Q10 therapy: a major advance in the management of resistant myocardial failure. Drugs Exptl. Clin. Res. 11: 581, 1985.Google Scholar
  22. 22.
    Frustaci A., Manzoli U., Lippa S., Oradei A., Littarru G.P., Folkers K. Blood and myocardial levels of ubiquinone in dilated cardiomyopathy: a biochemical approach to CoQ10 therapy. In: Folkers K., Yamamura Y. (Eds.), Biomedical and clinical aspects of coenzyme Q. Elsevier, Amsterdam, 1986, Vol. 5, p. 157.Google Scholar
  23. 23.
    Horrum M.A., Tobin R.B., Ecklund R.E. Thyroxine-induced changes in rat liver mitochondrial ubiquinone. Biochem. Biophys. Res. Commun. 138: 381, 1986.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1989

Authors and Affiliations

  • A. Mancini
    • 1
  • L. De Marinis
    • 1
  • F. Calabrò
    • 1
  • R. Sciuto
    • 1
  • A. Oradei
    • 2
  • S. Lippa
    • 2
  • S. Sandric
    • 3
  • G. P. Littarru
    • 4
  • A. Barbarino
    • 1
  1. 1.Istituti di Endocrinologia, Università Cattolica del Sacro CuoreRoma
  2. 2.Istituti di Fisiologia Umana, Università Cattolica del Sacro CuoreRoma
  3. 3.Istituti di Cardiologia, Università Cattolica del Sacro CuoreRoma
  4. 4.Istituto di Biochimica, Università di AnconaAnconaItaly

Personalised recommendations