Advertisement

Journal of Endocrinological Investigation

, Volume 12, Issue 7, pp 469–474 | Cite as

Effects of verapamil and nifedipine on gliclazide-induced increase in cytosolic free Ca2+ in pancreatic islet cells

  • P. Gobbe
  • A. Herchuelz
Article

Abstract

The changes in cytosolic free calcium [Ca2+]i induced by the sulfonylurea gliclazide and potassium in normal rat pancreatic islet cells were measured using the fluorescent Ca2+ indicator fura-2. Both in the absence or presence of 5.6 mM glucose, gliclazide caused a rapid and sustained increase in [Ca2+]i. The phenylalkylamine verapamil reduced these increases, but the Ca2+ channel blocker was more potent in the presence than in the absence of glucose. In contrast, nifedipine, a Ca2+ channel blocker of another chemical type, reduced to a similar extent the increase in [Ca2+]i evoked by gliclazide in the absence and presence of glucose. In the absence of glucose, a rise in extracellular K+ concentration from 5 to 20 or 30 mM also induced a rapid and sustained rise in [Ca2+]i. Verapamil more markedly reduced the rise in [Ca2+]i induced by 30 mM than by 20 mM K+. It is concluded that gliclazide increases Ca2+ inflow into normal islet cells primarily, if not exclusively, by opening voltage-sensitive Ca2+ channels. The differential sensitivity toward verapamil of gliclazide-induced rise in [Ca2+]i can be explained by the use-dependent block exerted by Ca2+ channel blockers of the phenylalkylamine type.

Key-words

Ca2+ channel blockers sulfonylurea pancreatic B cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Malaisse W.J., Mahy M., Brisson G.R., Malaisse-Lagae F. The stimulus-secretion coupling of glucose-induced insulin release. VIII. Combined effects of glucose and sulfonylureas. Eur. J. Clin. Invest. 2: 85, 1972.PubMedCrossRefGoogle Scholar
  2. 2.
    Hellmann B., Lenzen S., Sehlin J., Täljedal I.B. Effect of various modifiers of insulin release on the lanthanum-nondisplaceable 45Ca2+ uptake by isolated pancreatic islets. Diabetologia 13: 49, 1977.CrossRefGoogle Scholar
  3. 3.
    Sturgess N.C., Ashford M.L.J., Cook D.L., Hales C.N. The sulfonylurea receptor may be an ATP-sensitive potassium channel. Lancet 2: 474, 1985.PubMedCrossRefGoogle Scholar
  4. 4.
    Trube G., Rorsman P., Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic β-cells. Pflügers Archiv. 407: 493, 1986.PubMedCrossRefGoogle Scholar
  5. 5.
    Cook D.L., Hales C.N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311: 271, 1984.PubMedCrossRefGoogle Scholar
  6. 6.
    Ashcroft F.M., Harrison D.E., Ashcroft S.J.H. Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 311: 446, 1984.CrossRefGoogle Scholar
  7. 7.
    Henquin J.C., Meissner H.P. Opposite effects of tolbutamide and diazoxide on 86Rb fluxes and membrane potential in pancreatic B cells. Biochem. Pharmacol. 31: 1407, 1982.PubMedCrossRefGoogle Scholar
  8. 8.
    Matthews E.K., Sakamoto Y. Electrical characteristics of pancreatic islet cells. J. Physiol. 246: 421, 1975.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Meissner H.P., Atwater I.J. The kinetics of electrical activity of beta cells in response to a “square wave” stimulation with glucose or glibenclamide. Horm. Metab. Res. 8: 11, 1976.PubMedCrossRefGoogle Scholar
  10. 10.
    Henquin J.C. Tolbutamide stimulation and inhibition of insulin release: Studies of the underlying ionic mechanisms in isolated rat islets. Diabetologia 18: 151, 1980.PubMedCrossRefGoogle Scholar
  11. 11.
    Abrahamsson H., Berggren P.O., Rorsman P. Direct measurements of increased cytoplasmic Ca2+ in mouse pancreatic β-cells following stimulation by hypoglycemic sulfonylureas. FEBS Lett. 190: 21, 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    Nelson T.Y., Gaines K.L., Rajan A.S., Berg M., Boyd III A.E. Increased cytosolic calcium. A signal for sulfonylurea-stimulated insulin release from beta cells. J. Biol. Chem. 262: 2608, 1987.PubMedGoogle Scholar
  13. 13.
    Couturier E., Malaisse W.J. Insulinotropic effects of hypoglycaemic sulphonamides: The ionophoretic hypothesis. Diabetologia 19: 335, 1980.PubMedCrossRefGoogle Scholar
  14. 14.
    Gylfe E., Hellman B., Sehlin J., Täljedal I.B. Interaction of sulfonylurea with the pancreatic B-cell. Experientia 40: 1126, 1984.PubMedCrossRefGoogle Scholar
  15. 15.
    Lebrun P., Malaisse W.J., Herchuelz A. Modalities of gliclazide-induced Ca2+ influx into the pancreatic B-cell. Diabetes 31: 1010, 1982.PubMedCrossRefGoogle Scholar
  16. 16.
    Pipeleers D.G., in’t Veld P.A., Van De Winkel M., Maes E., Schuit F.C., Gepts W. A new in vitro model for the study of pancreatic A and B cells. Endocrinology 111: 806, 1985.CrossRefGoogle Scholar
  17. 17.
    Gobbe P., Herchuelz A. Does glucose reduce cytosolic free Ca2+ in normal pancreatic islet cells? Res. Comm. Chem. Path. Pharmacol. 63: 231, 1989.Google Scholar
  18. 18.
    Grynkiewicz G., Poenie M., Tsien R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440, 1985.PubMedGoogle Scholar
  19. 19.
    Wollheim C.B., Biden T.J. Second messenger function of inositol 1, 4, 5-triphosphate. Early changes in inositol phosphates, cytosolic Ca2+, and insulin release in carbamylcholine-stimulated RINm5F cells. J. Biol. Chem. 261: 8314, 1986.PubMedGoogle Scholar
  20. 20.
    Godfraind T., Miller R., Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol. Rev. 38: 321, 1986.PubMedGoogle Scholar
  21. 21.
    Bolton T.B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59: 606, 1979.PubMedGoogle Scholar
  22. 22.
    Meisheri K.D., Hwang O., Van Breemen C. Evidence for two separate Ca2+ pathways in smooth muscle plasmalemma. J. Membrane Biol. 59: 19, 1981.CrossRefGoogle Scholar
  23. 23.
    Lee K.S., Tsien R.W. Mechanisms of calcium channel blockade by verapamil, D-600, diltiazem and nitrendipine in single dialysed heart cells. Nature 308: 790, 1983.CrossRefGoogle Scholar
  24. 24.
    Vasseur M., Debuyser A., Joffre M. Sensitivity of pancreatic beta cell to calcium channel blockers. An electrophysiologic study of verapamil and nifedipine. Fund. Clin. Pharmacol. 1: 95, 1987.CrossRefGoogle Scholar
  25. 25.
    Meissner H.P., Henquin J.C. Comparison of the effects of glucose, amino acids and sulphonamides on the membrane potential of pancreatic B cells. Excerpta Medica, International Congress Series N. 600: 353, 1982.Google Scholar
  26. 26.
    Atwater I., Dawson C.M., Eddiestone G.T., Rojas E. Voltage noise measurements across the pancreatic β-cell membrane: calcium channel characteristics. J. Physiol. 314: 195, 1981.PubMedCentralPubMedGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1989

Authors and Affiliations

  • P. Gobbe
    • 1
  • A. Herchuelz
    • 1
  1. 1.Laboratory of PharmacologyBrussels University, School of MedicineBrusselsBelgium

Personalised recommendations