Skip to main content
Log in

Apoptosis and PCNA expression induced by prolactin in structural involution of the rat corpus luteum

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

There are two stages of luteal regression. The first stage is functional regression that is characterized by a decreased production of progesterone secretion; the second stage of structural involution is referred to as a structural luteolysis. In rodents, prolactin has a biphasic action on the corpus luteum. It is luteotrophic, but when exposed to functionally regressed corpora lutea it causes luteolysis. The objective of the present studies was to examine mechanisms of prolactin action in structural luteolysis, whether apoptosis is involved in this process, and to examine the possible association of cell proliferation signals as mediators of structural luteolysis. Prolactin-induced structural luteolysis was associated with apoptosis verified by terminal deoxynucleotidyl transferase (TdT)- mediated dUTP-biotin nick end labeling (TUNEL). Apoptotic cells made up about 3% of the cells 24 hours after the first injection of prolactin, a level that remained constant at all stages of structural luteolysis. Total ovarian weight and DNA content were decreased about 50% in 72 hours after induction of structural luteolysis by prolactin. The finding of about 3% of cells in apoptosis indicates apoptosis is a rapid process. Proliferating cell nuclear antigens (PCNA) of luteal cells were significantly decreased during functional luteal regression, but were conversely increased in structural luteolysis as shown by western blotting and immunohistochemistry. In general PCNA expression is reported to be decreased during structural involution, and there are no reports that have linked excess expression of PCNA with apoptosis and structural luteolysis. We speculate that an excessive increase in expression of PCNA which signals activation of cell proliferation creates a disorder in the signals involved with DNA synthesis. This disorder results in mitotic catastrophe and in the induction of apoptosis. Therefore the disorder of cell cycle signals in luteal cells are associated with prolactin induced apoptosis in structural luteolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malven P.V. Hypophysial regulation of luteolysis in the rat. In: McKerns K.W. (Ed.), Hypophysial Regulation of Luteolysis in the Rat. Meredith, New York, 1969, p. 367.

    Google Scholar 

  2. Evans H.M., Simpson M.E., Lyons M.R., Turpeinen K. Anterior pituitary hormones which favor the production of traumatic uterine placentomata. Endocrinology 28: 933, 1941.

    Article  CAS  Google Scholar 

  3. Greenwald G.S., Rothchild I. Formation and maintenance of corpora lutea in laboratory animals. J. Anim. Sci. 27: 139, 1968.

    PubMed  Google Scholar 

  4. Maven P.V., Sawyer C.H. A luteolytic action of prolactin in hypophysectomized rats. Endocrinology 79: 268, 1966.

    Article  Google Scholar 

  5. Desclin L. Observations sur la structure des ovaries chez des rats soumis à l’influence de la prolactin. Ann. Endocrinol. (Paris) 10: 1, 1949.

    CAS  Google Scholar 

  6. Endo T., Aten R.F., Wang F., Behrman H.R. Coordinate induction and actiuation of metalloproteinase and ascorbate depletion in structural luteolysis. Endocrinology 133: 690, 1993.

    PubMed  CAS  Google Scholar 

  7. Sawyer H.R., Niswender K.D., Braden T.D., Niswender G.D. Nuclear changes in ovine luteal cells in response to PGF2α. Dornest. Anim. Endocrinol. 7: 229, 1990.

    Article  CAS  Google Scholar 

  8. Juengel J.L., Garverick A.V., Johnson V.L., Toungquist R.S., Smith M.F. Apoptosis during luteal regression in cattle. Endocrinology 132: 249, 1993.

    PubMed  CAS  Google Scholar 

  9. Zheng J., Fricke P.M., Reynolds L.P., Redmer D.A. Evaluation of growth, cell proliferation, and cell death in bovine corpora lutea throughout estrous cycle. Biol. Reprod. 51: 623, 1994.

    Article  PubMed  CAS  Google Scholar 

  10. Dharmarajan A.M., Goodman S.B., Tilly K.I., Tilly J.L. Apoptosis during functional corpus luteum regression: Evidence for chorionic gonadotropin in promoting luteal cell survival. Endocr. J. 2: 295, 1994.

    CAS  Google Scholar 

  11. Kiya T., Endo T., Goto T., Yamamoto H., Ito E., Kudo R. Apoptosis of prolactin induced structural luteolysis in rat. Acta Obstet. Gynaecol. Jpn. 48: 147, 1996.

    CAS  Google Scholar 

  12. Viselli S.M., Stanek E.M., Mukherjee P. Prolactin induced mitogenesis of lymphocytes from ovariectomized rats. Endocrinology 129: 983, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Yu-Lee L-Y., Hrachovy J.A., Steuens A.M., Schvarz L.A. Interferon-regulatory factor 1 is an immediate-eary gene under transcriptional regulation by prolactin in Nb2 T cells. Mol. Cell. Biol. 10: 3087, 1990.

    PubMed Central  PubMed  CAS  Google Scholar 

  14. DeVito W.J., Okulicz W.C., Stone S., Avakian C. Prolactin-stimulated mitogenesis of cultured astrocytes. Endocrinology 130: 2549, 1992.

    PubMed  CAS  Google Scholar 

  15. Behrman H.R., Hichens M., Orczyk G.P. Progesterone and 20α-dihydroprogesterone. In: Jaffe B.M., Behrman H.R. (Eds.), Progesterone and 20α-dihydroprogesterone. Academic Press, New York, 1979, p. 701.

    Google Scholar 

  16. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248, 1976.

    Article  PubMed  CAS  Google Scholar 

  17. Kissane J.M., Robins E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J. Biol. Chem. 233: 184, 1958.

    PubMed  CAS  Google Scholar 

  18. Gavrieli Y., Sherman Y., Ben-Sasson S.A. Identification of programmed cell death in situ uia specific labeling of nuclear DNA fragmentation. J. Cell. Biol. 119: 493, 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Jablonka-Shariff R., Grazul-Bilska A.T., Redmer D.A., Reynolds L.P. Growth and cellular proliferation of ovine corpora lutea throughout the estrous cycle. Endocrinology 133: 1871, 1993.

    PubMed  CAS  Google Scholar 

  20. Zhenng J., Redmer D.A., Reynolds L.P. Vascular development and heparin-binding growth factors in the bovine corpus luteum at several stages of the estrous cycle. Biol. Reprod. 49: 1177, 1993.

    Article  Google Scholar 

  21. McNeilly A.S., Kerin J., Swanston I.A., Bramley T.A., Baird D.T. Changes in the binding of human chorionic gonadotropin/luteinizing hormone, follicle stimulating hormone and prolactin to human corpora lutea during the menstrual cycle and pregnancy. J. Endocrinol. 87: 315, 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Alila H.W., Rogo K.O., Gombe S. Effects of prolactin on steroidogenesis by human luteal cells in culture. Fertil. Steril. 47: 947, 1987.

    PubMed  CAS  Google Scholar 

  23. Kelly K.W., Brief S., Westly H.J. GH3 pituitary adenoma cells can reverse thymic aging in mice. Proc. Natl. Acad. Sci. USA. 83: 5663, 1986.

    Article  Google Scholar 

  24. Coles H.S.R., Burne J.F., Raff M.C. Large-scale normal cell death in developing rat kidney and its reduction by epidermal growth factor. Development 118: 777, 1993.

    PubMed  CAS  Google Scholar 

  25. Xiong Y., Zhang H., Beach D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71: 505, 1992.

    Article  PubMed  CAS  Google Scholar 

  26. Krishna T.S., Kong X.P., Gary S., Burgers P.M., Kuriyan J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79: 1233, 1994.

    Article  PubMed  CAS  Google Scholar 

  27. Matsuoka S., Yamaguchi M., Matsukage A. D-type cyclin-binding regions of proliferating cell nuclear antigen. J. Biol. Chem. 269: 11030, 1994.

    PubMed  CAS  Google Scholar 

  28. Waga S., Stillman B. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369: 207, 1994.

    Article  PubMed  CAS  Google Scholar 

  29. Liu Y.C., Marraccino R.L., Keng P.C., Bambara R.A., Lord E.M., Chou W.G., Zain S.B. Requirement for proliferating cell nuclear antigen expression during stage on the Chinese hamster ovary cell cycle. Biochemistry 28: 2967, 1989.

    Article  PubMed  CAS  Google Scholar 

  30. Shi L., Nishioka W.K., Th’ng J., Bradbury E.M., Litchfield D.W., Greenberg A.H. Premature p34cdc2 activation required for apoptosis Science 263: 1143, 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiya, T., Endo, T., Goto, T. et al. Apoptosis and PCNA expression induced by prolactin in structural involution of the rat corpus luteum. J Endocrinol Invest 21, 276–283 (1998). https://doi.org/10.1007/BF03350329

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350329

Key-words

Navigation