Journal of Endocrinological Investigation

, Volume 11, Issue 8, pp 577–584 | Cite as

Vitamin D and pancreatic islet function I. Time course for changes in insulin secretion and content during vitamin D deprivation and repletion

  • H. Labriji-Mestaghanmi
  • B. Billaudel
  • P. E. Garnier
  • W. J. Malaisse
  • B. C. J. Sutter


After weaning, rats were given free access to a control or vitamin D-deprived diet for 2 to 5 weeks. In the vitamin D deficient rats, plasma concentrations of 25-(OH)D3, 1, 25-(OH)2D3,24,25-(OH)2D3 calcium, glucose and insulin were all decreased. After an overnight fast, the plasma insulin concentration was also decreased even when the plasma glucose concentration was not significantly affected. The food intake and body growth was also impaired in vitamin D-deficient rats. Administration of vitamin D3 in oil for 3 to 6 days to vitamin D-deficient rats increased the plasma concentration of vitamin D metabolites, calcium and insulin, but not that of glucose, and stimulated food intake and body growth to a larger extent than in rats treated by oil alone. Vitamin D deprivation decreased and vitamin D treatment increased the insulin content of the whole pancreas or isolated islets and the secretory response of the islets to D-glucose. The changes in insulin release remained significant when the hormonal output was expressed relative to the insulin content of the islets. These findings confirm that vitamin D deficiency causes alterations of pancreatic B-cell function. Moreover, the time course for changes in biological variables during vitamin D deprivation and treatment suggests that such an alteration cannot be solely accounted for by concomitant abnormalities in either plasma calcium or glucose concentrations.


Vitamin D glycemia insulinemia pancreatic insulin isolated islets insulin secretion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boquist L., Hagström S., Strindlund L. Effect of 1,25-dihydroxycholecalciferol administration on blood glucose and pancreatic islet morphology in mice. Acta Path. Microbiol. Scand. (A) 85: 489, 1977.Google Scholar
  2. 2.
    Norman A.W., Frankel B.J., Heldt A.M., Grodsky G.M. Vitamin D-deficiency inhibits pancreatic insulin secretion. Science 209: 823, 1980.PubMedCrossRefGoogle Scholar
  3. 3.
    Clark S.A., Stumpf W.E., Sar M. Effect of 1,25-dihydroxyvitamin D3 on insulin secretion. Diabetes 30: 382, 1981.PubMedCrossRefGoogle Scholar
  4. 4.
    Chertow B.S., Sivitz W.I., Baranetsky N.G., Clark S.A., Waite A., DeLuca H.F. Cellular mechanisms of insulin release: the effects of vitamin D deficiency and repletion on rat insulin secretion. Endocrinology 113: 1511, 1983.PubMedCrossRefGoogle Scholar
  5. 5.
    Frankel B.J., Sehlin J., Täljedal I.-B. Vitamin D3 stimulates calcium-45 uptake by isolated mouse islets in vitro. Acta Physiol. Scand. 123: 61, 1985.PubMedCrossRefGoogle Scholar
  6. 6.
    Tanaka Y., Seino Y., Ishida M., Yamaoka K., Satomura K., Yabuuchi H., Seino Y., Imura H. Effect of 1,25-dihydroxyvitamin D3 on insulin secretion: direct or mediated? Endocrinology 118: 1971, 1986.PubMedCrossRefGoogle Scholar
  7. 7.
    Kadowaki S., Norman A.W. Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas. J.Clin. Invest. 73: 759, 1984.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Chertow B.S., Sivitz W.I., Baranetsky N.G., Cordle M.B., DeLuca H.F. Islet insulin release and net calcium retention in vitro in vitamin D-deficient rats. Diabetes 35: 771, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Kadowaki S., Norman A.W. Time course study of insulin secretion after 1, 25-dihydroxyvitamin D3 administration. Endocrinology 117: 1765, 1985.PubMedCrossRefGoogle Scholar
  10. 10.
    Cade C., Norman A.W. Rapid normalization/stimulation by 1,25-dihydroxyvitamin D3 of insulin secretion and glucose tolerance in the vitamin D-deficient rat. Endocrinology 120: 1490, 1987.PubMedCrossRefGoogle Scholar
  11. 11.
    Clark S.A., Stumpf W.E., Sar M., DeLuca H.F., Tanaka Y. Target cells for 1,25 dihydroxyvitamin D3 in the pancreas. Cell Tissue Res. 209: 515, 1980.PubMedCrossRefGoogle Scholar
  12. 12.
    Roth J., Bonner-Weir S., Norman A.W., Orci L. Immunohistochemistry of vitamin D-dependent calcium binding protein in chick pancreas: exclusive localization in β-cells. Endocrinology 110: 2216, 1982.PubMedCrossRefGoogle Scholar
  13. 13.
    Pochet R., Pipeleers D.G., Malaisse W.J. Calbindin-D 27 kDa: preferential localization in non-B islet cells of the rat pancreas. Biol. Cell. 61: 155, 1987.PubMedCrossRefGoogle Scholar
  14. 14.
    Kadowaki S., Norman A.W. Demonstration that the vitamin D metabolite 1,25(OH)2-vitamin D3 and not 24R,25(OH)2-vitamin D3 is essential for normal insulin secretion in the perfused rat pancreas. Diabetes 34: 315, 1985.PubMedCrossRefGoogle Scholar
  15. 15.
    Billaudel B., Mestaghanmi H., Sutter B.C.J., Malaisse W.J. Vitamin D3 deficiency and 45Ca handling in rat pancreatic islets. Diabetes Res. Clin. Pract. (Suppl. 1): S-51, 1985.Google Scholar
  16. 16.
    Billaudel B., Labriji-Mestaghanmi H., Sutter B.C.J., Malaisse W.J. Effect of vitamin D3 deficiency and repletion on ionic fluxes in rat pancreatic islets. Diabetologia 29: 519, 1986.Google Scholar
  17. 17.
    Malaisse-Lagae F., Malaisse W.J. Insulin release by pancreatic islets. In: Larner J., Pohl S.L. (Eds), Methods in Diabetes Research J. Wiley & Sons, New York, 1984, p. 147.Google Scholar
  18. 18.
    Best C.H., Ridoux J.M. Diet and insulin content of pancreas. J. Physiol. (Paris) 97: 107, 1969.Google Scholar
  19. 19.
    Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal. Biochem. 72: 248, 1976.PubMedCrossRefGoogle Scholar
  20. 20.
    Hugget A.S., Nixon D.A. Use of glucose oxidase, peroxidase and O-diamisidine in determination of blood and urine glucose. Lancet 2: 368, 1957.CrossRefGoogle Scholar
  21. 21.
    Herbert V., Lau K.S., Gottlieb C.W., Bleicher S.J. Coated charcoal immunoassay of insulin. J. Clin. Endocrinol. Metab. 25: 1375, 1965.PubMedCrossRefGoogle Scholar
  22. 22.
    Garcin H., Hoo-Paris R. Etude de quelques constituants du sang et de l’urine des lérots dans différentes conditions physiologiques. C.R. Soc. Biol. 164: 2007, 1970.Google Scholar
  23. 23.
    Garnier P.E., Dehennin L., Scholler R. Séparation des métabolites de la vitamine D par adsorption sur silice vierge et désorption sélective. Application au dosage du 25-hydroxycholécalciférol par radiocompétition. Path. Biol. 31: 652, 1983.Google Scholar
  24. 24.
    Chan J.C.M., Rogers K.S. Lack of influence of vitamin D deficiency on insulin release from the isolated pancreatic islets of rats. Experientia 42: 1253, 1986.PubMedCrossRefGoogle Scholar
  25. 25.
    Segura M.C., Malaisse W.J. Failure of noncaloric sweet drinking to prevent the fasting-induced inhibition of insulin release. Ann. Nutr. Metab. 31: 272, 1987.PubMedCrossRefGoogle Scholar
  26. 26.
    Billaudel B., Labriji-Mestaghanmi H., Sutter B.C.J., Malaisse W.J. Vitamin D and pancreatic islet function. II. Dynamics of insulin release and cationic fluxes. J. Endocrinol. Invest. 11: 585, 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1988

Authors and Affiliations

  • H. Labriji-Mestaghanmi
    • 1
  • B. Billaudel
    • 1
  • P. E. Garnier
    • 1
  • W. J. Malaisse
    • 1
  • B. C. J. Sutter
    • 1
  1. 1.Laboratoire de Physiologie Animale (Endocrinologie)Université de BordeauxTalenceFrance

Personalised recommendations