Skip to main content
Log in

Cortisol in human tissues at different stages of life

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Aim of the work was to measure the Cortisol level in human tissues at different stages of life, by means of radioimmunoassay and by chromatography. Viable samples of 13 different tissues were obtained during surgical intervention from 30 to 70 years old patients of either sex. Mean tissue Cortisol concentration was 78±35 ng/g, ranging from 20±10 ng/g in the thyroid to 124±76 ng/g in the kidney. Similar values were measured in the corresponding tissues from not decayed corpses, so that paired values could be mediated. However the pancreas, and corrupted autopsy tissues, gave nil or exceedingly high Cortisol concentration values; in some cases, opposite extreme values were measured in different organs of the same body. Cortisol concentration was also measured in 11 sound different tissues of spontaneously aborted or stillbirth fetuses, between 16 and 36 weeks of gestation. Mean value was 63±27 ng/g, ranging from 30±25 ng/g in the liver to 104±52 ng/g in the lungs. Also in fetuses nil or exceedingly high Cortisol values occurred in altered tissues. One hundred and fourteen samples of limbs and carcasses of 7 to 12 gestational weeks embryos, obtained from voluntary abortions, were also examined: 20% gave nil result, in the remaining mean Cortisol concentration was 32 ng/g. In 33 samples of embryos’ mixed viscera, RIA and chromatography gave unreliable exceedingly high values. The nil and the exceedingly high values measured in the altered autoptic tissue specimens were inconsistent with the Cortisol blood level measured in the patients, as were those measured in embryonic tissues with the acknowledged blood and adrenals Cortisol levels at that stage of life. Thus Cortisol may be measured by RIA and by chromatography in sound tissues, while the values obtained in the pancreas, in corrupted tissues, and in embryonal viscera do not represent the hormonal milieu, but are likely artifacts due to impeachment of the diagnostic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polk D.H. Disorders of the adrenal gland. In: Taeusch H.W., Ballard R.A., Avery M.S. (Eds.), Diseases of the newborn. W.B. Saunders, Philadelphia, 1991, p. 938.

    Google Scholar 

  2. Yang K., Berdusco E.T.M., Challis J.R.G. Opposite effects of glucocorticoids on hepatic ß-hydroxysteroid dehydrogenase mRNA and activity in fetal and adult sheep. J. Endocrinol. 143: 121, 1994.

    Article  PubMed  CAS  Google Scholar 

  3. Solomon S., Bird C.E., Ling W., Iwaiya M., Young P.M.C. Formation and metabolism of steroids in the fetus and placenta. In: Pincus G. (Ed.), Recent progress in hormone research. Academic Press, New York, 1967, p. 297.

    Google Scholar 

  4. Murphy B.E.P., Diex d’Aux R.C. Steroid levels in the human fetus: Cortisol and cortisone. J.Clin.Endocrinol.Metab. 35: 678, 1972.

    Article  PubMed  CAS  Google Scholar 

  5. Partsch C.J., Sippel W.G., Makenzie I.Z., Anysey Green A. The steroid hormonal milieu of the indisturbed human fetus and mother at 16–20 weeks of gestation. J. Clin. Endocrinol. Metab. 73: 969, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Suganuma N., Seo H., Yamamoto N., Kikkawa F., Oguri H., Narita O., Tomoda Y., Matsui N. The ontogeny of growth hormone in the human fetal pituitary. Am. J. Obstet. Gynecol. 160: 729, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Beitins I.Z., Bayard F., Ances I.G. et al. The metabolic clearance, blood production, interconvertion and transplacental passage of cortisol and cortison in pregnancy near term. Pediatr. Res. 7: 509, 1973.

    Article  PubMed  CAS  Google Scholar 

  8. Murphy B.E.P. Steroid arterovenous differences in umbilical cord plasma: evidence of cortisol production by the human fetus in early gestation. J. Clin. Endocrinol. Metab. 36: 1037, 1973.

    Article  PubMed  CAS  Google Scholar 

  9. Miller A.H., Spencer R.L., Husain A., Rhee R., McEwen B.S., Stei M. Differential expression of type I adrenal steroid receptors in immune tissue is associated with tissue specific regulation of type II receptors by aldosterone. Endocrinology 733: 2133, 1993.

    Google Scholar 

  10. Ballard P.L, Ballard R.A. Cytoplasmatic receptor for glucocorticoids in lung in the human fetus and neonate. J. Clin. Invest. 53: 477, 1974.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Dickerman Z., Grant D.R., Faiman C., Winter J.S.D. Intradrenal steroid concentrations in man: zonal differences and developmental changes. J. Clin. Endocrinol. Metab. 59: 1031, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Moldow R.L., Yalow R.S. Artifacts in the radioimmunoassay of ACTH in tissue extracts and plasma. Horm.Metab.Res. 12: 105, 1980.

    Article  PubMed  CAS  Google Scholar 

  13. Brotheron J., Rothbart B. Serum cortisol in adrenal hirsutism as estimated by five different methods. J. Steroid Biochem. 36: 641, 1990.

    Article  Google Scholar 

  14. Reinke M., Allolio B., Wurth G., Winkelmann W. The hypothalamic-pituitary-adrenal axis in critical illness: response to dexamethasone and corticotropin-releasing hormone. J. Clin. Endocrinol. Metab. 77: 151, 1993.

    Google Scholar 

  15. Vescovo P.P., Marinetti L, Pedrazzoni M., Taddei F., Michelini M., Pioli G., Passeri M. Circulating opioid peptides during surgical stress. Neuroendocrinol. Lett. 13: 437, 1991.

    Google Scholar 

  16. Vasquez D.M., Akil H. Development of pittuitary pro-opiomelanocortin gene and peptide expression: characterization and effect of repeated intermittent maternal isolation. Neuroendocrinology 56: 724, 1992.

    Article  Google Scholar 

  17. Silver M., Fowden A.L. Prepartum adrenocortical maturation in the fetal foal: response to ACTH 1–24. J. Endocrinol. 142: 417, 1994.

    Article  PubMed  CAS  Google Scholar 

  18. Jaffe R.B., Mulchaney J.J., Diblasio A.M., Martin M.C., Blumenfeld Z., Dumesic D.A. Peptide regulation of pituitary and target tissue function and growth in the primate fetus. Rec. Prog. Horm. Res. 44: 431, 1988.

    PubMed  CAS  Google Scholar 

  19. Ramin S.M., Porter J.C., Gilstrap I.C., Rosenfeld C.R. Stress hormones and acid-base status of human fetus at delivery. J. Clin. Endocrinol. Metab. 73: 182, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Goland R.S., Jozak S., Warren W.B., Conwell I.M., Stark R.I., Tropper P.I. Elevated levels of umbilical cord plasma corticotropin-releasing hormone in growth retarded fetuses. J. Clin. Endocrinol. Metab. 77: 1174, 1993.

    PubMed  CAS  Google Scholar 

  21. Taylor P.M., Silver M., Fowden A.L. Intravenous catheterisation of fetus and mare in late pregnancy: management and respiratory, circulatory and metabolic effects. Equine Veterin. J. 24: 391, 1992.

    Article  CAS  Google Scholar 

  22. Cooper E.S., Brooks A.N., Miller M.R., Grer I.A. Corticotrophin-releasing factor immunostaining is present in placenta and fetal membranes from the first trimester onward and is not affected by labour or administration of mefipristone. Clin. Endocrinol. (Oxf.) 41: 677, 1994.

    Article  CAS  Google Scholar 

  23. Baird A., Kan K.W., Solomon B. Role of pro-opiomelanocortin-derived peptides in the regulation of steroid production by human fetal adrenal in culture. J. Endocrinol. 97: 375, 1983.

    Article  Google Scholar 

  24. Pepe G.J., Albrecht E.D. Regulation of the primate fetal adrenal cortex. Endocr. Rev. 11: 151, 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Dupont E., Luu-The V., Labrie F., Pelletier G. Ontogeny of 3ß-hydroxysteroid dehydrogenase D4-D5 isomerase (3ß HSD) in human adrenal gland performed by immunochemistry. Mol. Cell. Endocrinol. 74/2: R7, 1990.

    Article  Google Scholar 

  26. Jones C.T., Roebuck M.M. ACTH peptides and the development of the fetal adrenal. Biochemistry 12: 77, 1980.

    CAS  Google Scholar 

  27. Pepe G.J., Davies W.A., Albrecht E. Activation of the baboon fetal pituitary-adrenocortical axis at midgestation by estrogen: enhancement of fetal pituitary proopiomelanocortin messenger ribonucleic acid expression. Endocrinology 735: 2581, 1994.

    Google Scholar 

  28. Murphy B.E.P. Human fetal serum cortisol levels related to gestational age: evidence of midgestational fall and a steep late gestational rise, independent of sex and mode of delivery. Am. J. Obstet. Gynecol. 144: 276,1982.

    PubMed  CAS  Google Scholar 

  29. Gluckman J.A., Challis J.R.G. The changes response pattern of sheep fetal adrenal cells throughout the course of gestation. Endocrinology 106: 1371, 1980.

    Article  Google Scholar 

  30. Winter J.S.D. Fetal and neonatal adrenocortical development. In: James V.H.T. (Ed.), The adrenal gland. Raven Press, New York, 1992, p. 99.

    Google Scholar 

  31. Conley A.J., Rainey W.F., Mason J.I. Ontogeny of steroidogenic enzyme expression in the porcine conceptus. J. Molec. Endocrinol. 12: 155,1994.

    Article  CAS  Google Scholar 

  32. Costa A., Rocci M.P., Arisio R., Benedetto C., Fabris C., Bertino E., Botta G., Marozio L., Mostert M., Urbano D., Emanuel A. Glucocorticoid receptors immunoreactivity in tissue of human embryos. J. Endocrinol. Invest. 19: 92, 1996.

    Article  PubMed  CAS  Google Scholar 

  33. Kindler P.M., Chuang D.C., Perks A.M. Fluid production by in vitro lungs from near-term fetal guinea pigs: effects of cortisol and aldosterone. Acta Endocrinol. (Copenh.) 129: 169, 1993.

    CAS  Google Scholar 

  34. Hundertmark S., Buhler H., Ragosch V., Dinkelborg L., Arabin B., Weitzel H.K. Correlation of surfactant phosphatidylcholine synthesis and 11ß-hydroxysteroid dehydrogenase in the fetal lung. Endocrinology 136: 2573, 1995.

    PubMed  CAS  Google Scholar 

  35. Fowden A.L., Mijovic J., Silver M. The effect of cortisol on hepatic and renal gluconeogenic enzyme activities in the sheep fetus during late gestation. J. Endocrinol. 137: 213, 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Costa A., Zoppetti G., Benedetto C., Bertino E., Marozio L., Cabris C., Arisio R., Giraudi G.F., Testori O., Ariano M., Maulà V., Bertini E. Immunolike growth hormone substance in tissues from human embryos/fetuses and adults. J. Endocrinol. Invest. 16: 325, 1993.

    Article  Google Scholar 

  37. Caplan R.H., Koob L, Abellers H.M., Pagliara A.S., Kovacs K., Randall R.V. Cure of acromegaly by operative removal of an islet cell tumour of the pancreas. Am. J. Med. 68: 874, 1978.

    Article  Google Scholar 

  38. Jaffe R. The pancreas. In: Wiggesworth J.S., Singer B. (Eds.), Textbook of fetal and perinatal pathology. Blackwell Scientific Publications, Oxford, 1991, p. 1021.

    Google Scholar 

  39. Fuqua J., Sher E.S., Migeon C.J., Berkovitz G.D. Assay of plasma testosterone during the first six months of life: importance of chromatographic purification of steroids. Clin. Chem. 47: 1146, 1995.

    Google Scholar 

  40. Makela S.R., Ellis G. Nonspecificity of a direct 17α-hydroxyprogesterone radioimmunoassay kit when used with samples from neonates Clin. Chem. 84: 2070, 1988.

    Google Scholar 

  41. Wong T., Ellis G. Partial characterization of substances in neonatal plasma that interfere with 17a-hydroxyprogesterone assay. Clin. Chem. 36: 1150, 1990.

    Google Scholar 

  42. Voutilainen R., Ilvesmaki V., Miettinen P.J. Low expression of 3ß-hydroxy-5-ene steroid dehydrogenase gene in human fetal adrenals in vivo: adrenocorticotropin and protein kinase C dependent regulation in adrenocortical cultures. J. Clin. Endocrinol. Metab. 72: 761, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, A., Benedetto, C., Fabris, C. et al. Cortisol in human tissues at different stages of life. J Endocrinol Invest 19, 463–471 (1996). https://doi.org/10.1007/BF03349892

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03349892

Keywords

Navigation