Journal of Endocrinological Investigation

, Volume 18, Issue 9, pp 723–728 | Cite as

Temporal relationship between bone loss and increased bone turnover: A longitudinal study following natural menopause

  • R. Rosso
  • S. Minisola
  • A. Scarda
  • M. T. Pacitti
  • V. Carnevale
  • E. Romagnoli
  • G. F. Mazzuoli


We report the results of a longitudinal study aimed at better defining concomitant changes of both bone mineral density (BMD) and of four independent markers of bone turnover (serum osteocalcin, serum alkaline phosphatase activity, fasting urinary hydroxyproline/creatinine and calcium/creatinine ratio) following natural menopause. The results obtained indicate that, within a relatively short period of time since cessation of gonadal function, conventional markers of bone turnover behave differently. In fact, while the mean values of hydroxyproline/creatinine ratio ( felt to be a marker of bone résorption) rise immediately at the first control (19.7±11.7 months), the bone formation markers gradually increase and, as far as serum osteocalcin levels are concerned, this increment appears to be long-lasting. As a result of these changes, a negative skeletal balance follows, which is documented by the prolonged reduction of bone mineral density during the entire observation period. Mean±SD % measured yearly bone loss was −2.83±2.6. There was a highly significant correlation between initial and final BMD values (r= 0.908, p<0.001; r2= 82.5) and a weak inverse correlation (r= −0.298, p<0.046) between initial serum alkaline phosphatase values and % yearly bone loss. In conclusion, measurement of the biological indices of bone remodelling following natural menopause indicate that the increase in osteogenesis is delayed compared to that of bone résorption; furthermore, in the immediate postmenopausal period, the actual bone massshould be considered the best predictor of future bone mass. The inverse correlation found between % yearly bone loss and serum alkaline phosphatase values seems to emphasize the importance of increased bone turnover as an independent predictor of bone loss.


Menopause biomarkers bone mineral density bone turnover 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stepan J.J., Pospichal J., Presl J., Pacovsky V. Bone loss and biochemical indices of bone remodeling. Bone 8: 279, 1987.PubMedCrossRefGoogle Scholar
  2. 2.
    Stepan J.J., Pospichal J., Schreiber V., Kanka J., Mensik J., Presl J., Pacovsky V. The application of plasma tartrate-resistant acid phosphatase to assess changes in bone résorption in response to artificial menopause and its treatment with estrogen or norethisterone. Calcif. Tissue Int. 45: 273, 1989.PubMedCrossRefGoogle Scholar
  3. 3.
    Mazzuoli G.F., Tabolli S., Bigi F., Valtorta C., Minisola S., Diacinti D., Scarnecchia L., Bianchi G., Piolini M., Dell’Acqua S. Effects of salmon calcitonin on the bone loss induced by ovariectomy. Calcif. Tissue Int. 47: 209, 1990.PubMedCrossRefGoogle Scholar
  4. 4.
    Wronski T.J., Walsh C.C., Ignaszewski L.A. Histologic evidence for osteopenia and increased bone turnover in ovariectomized rats. Bone 7: 119, 1986.PubMedCrossRefGoogle Scholar
  5. 5.
    Wronski T.J., Cintron M., Dann L.M. Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif. Tissue Int. 43: 179, 1988.PubMedCrossRefGoogle Scholar
  6. 6.
    Slemenda C., Hui S.L., Longcope C., Johnston C.C. Sex steroids and bone mass. A study of changes about the time of menopause. J. Clin. Invest. 80: 1261, 1987.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Falch J.A., Gautvik K.M. A longitudinal study of pre- and postmenopausal changes in calcium metabolism. Bone 9: 15, 1988.PubMedCrossRefGoogle Scholar
  8. 8.
    Nilas E., Christiansen C. Bone mass and its relationship to age and the menopause. J. Clin. Endocrinol. Metab. 65: 697, 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    Kelly P.J., Pocock N.A., Sambrook P.N., Eisman J.A. Age and menopause-related changes in indices of bone turnover. J. Clin. Endocrinol. Metab. 69: 1160, 1989.PubMedCrossRefGoogle Scholar
  10. 10.
    Mazzuoli G.F., Minisola S., Valtorta C. Antonelli R., Tabolli S., Bigi F. Changes in mineral content and biochemical bone markers at the menopause. Isr. J. Med. Sci. 21: 875, 1985.PubMedGoogle Scholar
  11. 11.
    Dempster D.W., Lindsay R. Pathogenesis of osteoporosis. Lancet 341: 797, 1993.PubMedCrossRefGoogle Scholar
  12. 12.
    Pouilles J.M., Tremollieres F., Ribot C. The effects of menopause on longitudinal bone loss from the spine. Calcif. Tissue Int. 52: 340, 1993.PubMedCrossRefGoogle Scholar
  13. 13.
    Minisola S., Pacitti M.T., Scarda A., Rosso R., Romagnoli E., Carnevale V., Scarnecchia L., Mazzuoli G.F. Serum ionized calcium, parathyroid hormone and related variables: effect of age and sex. Bone Miner. 23: 183, 1993.PubMedCrossRefGoogle Scholar
  14. 14.
    Price P.A., Nishimoto S.K. Radioimmunoassay for the vitamin K-dependent protein of bone and its discovery in plasma. Proc. Natl. Acad. Sci. USA 77: 2234, 1980.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Minisola S., Antonelli R., Mazzuoli G. Clinical significance of free plasma hydroxyproline measurement in metabolic bone disease. J. Clin. Chem. Clin. Biochem. 23: 515, 1986.Google Scholar
  16. 16.
    Minisola S., Rosso R., Romagnoli E., Pacitti M.T., Scarnecchia L., Carnevale V., Mazzuoli G.F. Trabecular bone mineral density in primary hyperparathyroidism; relationship to clinical presentation and biomarkers of skeletal turnover. Bone Miner. 20: 113, 1993.PubMedCrossRefGoogle Scholar
  17. 17.
    Scarnecchia L., Minisola S., Pacitti M.T., Carnevale V., Romagnoli E., Rosso R., Acca M., Scarda A., D’Erasmo E., Mazzuoli G.F. Bone remodeling behaviour in early menopause. Bone Miner. 17(Suppl.): 170, 1992 (Abstract).CrossRefGoogle Scholar
  18. 18.
    Parfitt A.M. Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 13: S41, 1992.PubMedCrossRefGoogle Scholar
  19. 19.
    Boyce R.W., Mosekilde L., Weisbrode S.E., Safron J.A., Stills Jr H.G., Jankowsky M.L., Franks A.F., Ebert D.C., Paddock C.L., Gundersen H.J.G. Calcium-restricted ovariectomized Sinclair S-1 minipigs: a model of osteopenia and trabecular plate perforation. J. Bone Min. Res. 6 (Suppl. 1): S218, 1991 (Abstract).Google Scholar
  20. 20.
    Parfitt A.M. Pharmacologic manipulation of bone remodelling and calcium homeostasis. In: Kanis J.A. (Ed.), Calcium metabolism. Progresses in basic and clinical pharmacology. Karger, Basel, 1990, vol 4, p. 1.Google Scholar
  21. 21.
    Parfitt A.M. Use of bisphosphonates in the prevention of bone loss and fractures. Am. J. Med. 91 (Suppl. 5B): 42S, 1991.PubMedCrossRefGoogle Scholar
  22. 22.
    Mazzuoli G.F., Bianchi G., Rosso R., Valtorta C. Menopause and bone loss. Calcif. Tissue Int. 48 (Suppl.): A72, 1991 (Abstract).Google Scholar
  23. 23.
    Hansen M.A., Overgaard K., Riis B.J., Christiansen C. Role of peak bone mass and bone loss in postmenopausal osteoporosis. Br. Med. J. 303: 961, 1991.CrossRefGoogle Scholar
  24. 24.
    Heaney R.P. Bone mass, nutrition, and other lifestyle factors. Am. J. Med. 95 (Suppl. 5A): S29, 1993.CrossRefGoogle Scholar
  25. 25.
    Hui S.H., Slemenda C.W., Johnston Jr C.C. The contribution of bone loss to postmenopausal osteoporosis. Osteoporos. Int. 1: 30, 1990.PubMedCrossRefGoogle Scholar
  26. 26.
    Christiansen C., Riis B.J., Rødbro P. Prediction of rapid bone loss in postmenopausal women. Lancet 1: 1105, 1987.PubMedCrossRefGoogle Scholar
  27. 27.
    Christiansen C., Riis B.J., Rødbro P. Screening procedure for women at risk of developing postmenopausal osteoporosis. Osteoporos. Int. 1: 35, 1990.PubMedCrossRefGoogle Scholar
  28. 28.
    Scarnecchia L., Minisola S., Pacitti M.T., Carnevale V., Romagnoli E., Rosso R., Mazzuoli G.F. Clinical usefulness of serum tartrate-resistant acid phosphatase activity to evaluate bone turnover. Scand. J. Clin. Lab. Invest. 51: 517, 1991.PubMedCrossRefGoogle Scholar
  29. 29.
    Riggs B.L. Toward optimal therapy of established osteoporosis: evidence that antiresorptive and formation-stimulating regimens reduce vertebral fractures by independent mechanisms. Fourth International Symposium on Osteoporosis. Hong Kong, 27 March–2 April, 1993 (Astract).Google Scholar
  30. 30.
    Blumsohn A., Eastell R. Prediction of bone loss in postmenopausal women. Eur. J. Clin. Invest. 22: 764, 1992.PubMedCrossRefGoogle Scholar
  31. 31.
    Mole P.A., Walkinshaw M.H., Robins S.P., Paterson C.R. Can urinary pyridinium crosslinks and urinary estrogens predict bone mass and rate of bone loss after the menopause? Eur. J. Clin. Invest. 22: 767, 1992.PubMedCrossRefGoogle Scholar
  32. 32.
    Uebelhart D., Schlemmer A., Johansen J.S., Gineyts E., Christiansen C., Delmas P.D. Effect of menopause and hormone replacement therapy on the urinary excretion of pyridinium cross-links. J. Clin. Endocrinol. Metab. 72: 367, 1991.PubMedCrossRefGoogle Scholar
  33. 33.
    Minisola S., Carnevale V., Pacitti M.T., Romagnoli E., Scarnecchia L., Rosso R., Minisola G., Mazzuoli G.F. Serum osteocalcin in metabolic bone disease: what is its real significance? J. Endocrinol. Invest. 16: 277, 1993.PubMedCrossRefGoogle Scholar
  34. 34.
    Minisola S., Rosso R., Carnevale V., Romagnoli E., Scarnecchia L., Pacitti M.T., Scarda A., Mazzuoli G.F. Peak bone mass and rate of loss in determining postmenopausal skeletal mass. J. Bone Min. Res. 8 (Suppl. 1): S252; 1993 (Abstract).Google Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1995

Authors and Affiliations

  • R. Rosso
    • 1
  • S. Minisola
    • 1
  • A. Scarda
    • 1
  • M. T. Pacitti
    • 1
  • V. Carnevale
    • 1
  • E. Romagnoli
    • 1
  • G. F. Mazzuoli
    • 1
  1. 1.Istituto di II Clinica Medica, Policlinico Umberto I, Cattedra di Medicina InternaUniversità degli Studi di Roma “La Sapienza”RomaItaly

Personalised recommendations