Journal of Endocrinological Investigation

, Volume 14, Issue 5, pp 367–373 | Cite as

Erythrocyte and platelet fatty acids in retinitis pigmentosa

  • A. M. Stanzial
  • L. Bonomi
  • C. Cobbe
  • O. Olivieri
  • D. Girelli
  • M. T. Trevisan
  • A. Bassi
  • S. Ferrari
  • Roberto Corrocher


The fatty acid composition and the glutathione-peroxidase activity (GSH-Px) of erythrocytes and platelets, the production of malondialdehyde (MDA) by platelets and the activity of the main systems of transmembrane cation transport in erythrocyte have been studied in 12 patients (5 males and 7 females) affected by retinitis pigmentosa (RP). A remarkable increase of saturated fatty acids (SFA), particularly of stearic acid (C18:0), has been noted in these patients. The reduced unsaturated/saturated fatty acids ratio (PUFA/SFA) observed in both erythrocytes and platelets and the decrease of arachidonic acid in platelets may depend by an active peroxidation process as documented by the increase of MDA. Platelet glutathione-peroxidase (PTL-GSH-PX) and plasma retinol were in the normal range, whereas erythrocyte glutathione-peroxidase (E-GSH-PX), MDA and plasma alfa-tocopherol were increased in patients with RP. The activities of Na+-K+ pump, cotransport and Na+-Li+countertransport were normal in RP erythrocytes.


Membrane erythrocyte platelet fatty acid glutathione-peroxidase malondialdehyde alpha-tocoferol retinol cation transport retinitis pigmentosa 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell J. Retinitis pigmentosa and allied disorders. In: Pearson K. (Ed.), Treasury of human inheritance, Cambridge University Press, London,. 1922, p. 1.Google Scholar
  2. 2.
    McKusick V.A. Mendelian inheritance in man: catalogs of autosomal dominant autosomal recessive and X-linked phenotypes, ed 5. Johns Hopkins University Press, Baltimore, 1978.Google Scholar
  3. 3.
    Botermans C.H.G. Primary pigmentary degeneration and its association with neurological diseases. In: Vinken P.J., Bruyn G.W., (Eds.) Neuroretinal degenerations: handbook of clinical neurology. American Elsevier, New York, 1972, p. 148.Google Scholar
  4. 4.
    Aguirre G., Farber D., Lolley R., Fletcher R.T., Chader G.J. Rodocone dysplasia in Irish setters: a defect in cyclic GMP metabolism in visual cells. Science 201: 1133, 1978.CrossRefGoogle Scholar
  5. 5.
    La Vail M.M. Analysis of neurological mutants with inherited retinal degeneration. Friedenwald lecture. Invest. Ophthalmol Visual Sci. 21: 638, 1981.Google Scholar
  6. 6.
    Boughman J., Fishman G.A. A genetic analysis of retinitis pigmentosa. Br. J., Ophthalmol. 67: 449, 1983.CrossRefGoogle Scholar
  7. 7.
    Anderson R.E., Benolken R.M., Dudley P.A., Landis D.J., Wheeler T.G. Polyunsaturated fatty acids of photoreceptor membranes. Exp. Eye Res. 16: 205, 1974.CrossRefGoogle Scholar
  8. 8.
    Fliesler S., Anderson R.E. Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 22: 79, 1983.PubMedCrossRefGoogle Scholar
  9. 9.
    Bazan N., Scott B.L., Reddy T.S., Pelias M.Z. Decreased content of docosahexaenoate and arachidonate in plasma phospholipids in Uhsher’s syndrome. Biochem. Biophys. Res Commun. 141: 600, 1986.PubMedCrossRefGoogle Scholar
  10. 10.
    Neuringer M., Connor W.E., Van Petten C., Barstad L. Dietary omega-3 fatty acid deficiency and visual loss in infant Rhesus monkeys. J. Clin. Invest. 73: 272, 1984.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Rotstein N.P., Ilincheta De Boschero M.G., Giusto N.M., Aveldagno M.I. Effects of aging on the composition and metabolism of docosahexaenoate-containing lipids of retina. Lipids 22: 253, 1987.PubMedCrossRefGoogle Scholar
  12. 12.
    Campbell D.A., Tonks E.L. Biochemical findings in human retinitis pigmentosa with particular relation to vitamin A deficiency. Br. J. Ophthalmol. 46: 151, 1962.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Runge P., Calver D., Marshall J., Taylor D. Histopathology of mitochondrial cytopathy and the Laurence Moon Biedl syndrome. Br. J. Ophthalmol. 70: 782, 1986.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Rose G., Oklander M. Improved procedure for the extraction of lipids from human erythrocytes. J. Lipid Res. 6: 428, 1965.PubMedGoogle Scholar
  15. 15.
    Bartlell G.R. Phosphorous assay In column chromatography. J. Biol. Chem. 234: 466, 1959.Google Scholar
  16. 16.
    Lillington J.M., Trafford D.J.H., Makin H.L.J. A rapid and simple method for the esterification of fatty acids and steroid carboxilic acids prior to gasliquid chromatography. Clin. Chim. Acta 111: 91, 1981.PubMedCrossRefGoogle Scholar
  17. 17.
    Gunzler W.A., Kremers H., Flohe L. An improved coupled test procedure for glutathione-peroxidase (EC in blood. Z. Klin. Chem. Klin. Biochem. 12: 444, 1974.PubMedGoogle Scholar
  18. 18.
    Guidi Q.C., Schiavon R., Biasioli A., Perona G. The enzyme glutathione-peroxidase in arachidonic acid metabolism of human platelets. J. Lab. Clin. Med. 104: 574, 1984.PubMedGoogle Scholar
  19. 19.
    Lowry O.H., Rosenbrough N.J., Farra I., Randall R.J. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265, 1951.PubMedGoogle Scholar
  20. 20.
    Smith J.B., Ingermann C.M., Silver M.J. Malondialdehyde formation as an indicator of prostaglandin production by human platelets. J. Lab. Clin. Med. 88: 167, 1976.PubMedGoogle Scholar
  21. 21.
    Miller K.W., Lorr N.A., Yang C.S. Simultaneous determination of plasma retinol, a-to-copherol lycopene, a-carotene and b-carotene by high performance liquid chromatography. Anal. Biochem. 138: 340, 1984.PubMedCrossRefGoogle Scholar
  22. 22.
    Brugnara C., Kopin A.S., Bunn H.F., Tosteson D.C. Regulation of cation content and cell volume in hemoglobin C disease. J. Clin. Invest. 75: 1608, 1985.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Canessa M., Bize I., Adragna N., Tosteson D.C. Cotransport of lithium and potassium in human red cells J. Gen. Physiol. 80: 149, 1982.PubMedCrossRefGoogle Scholar
  24. 24.
    Canessa M., Adragna N., Solomon H.S., Connolly T.M., Tosteson D.C. Increase of sodium-lithium countertransport in red cell of patients with essential hypertension. N. Engl. J. Med. 302: 772, 1980.PubMedCrossRefGoogle Scholar
  25. 25.
    Converse C.A., Hammer H.H., Packard C.J., Shephard J. Plasma lipid abnormalities in retinitis pigmentosa and related conditions. Trans. Ophthalmol Soc. U.K. 103: 508, 1983.PubMedGoogle Scholar
  26. 26.
    Carvahlo A.C., Colman R.W., Lees R.S. Platelet function in hyperlipoproteinemia. N. Engl. J. Med. 290: 434, 1974.CrossRefGoogle Scholar
  27. 27.
    Kearns T.P., Sayre G.P. Retinitis pigmentosa, external ophtalmolegia and complete heart block. Arch. Ophthalmol. 60: 280, 1958.CrossRefGoogle Scholar
  28. 28.
    Clark D.S., Myerburg R.J., Molares A.R., Befeler B., Hernandez F.A., Gelban D.H. Heart block in Keams Sayre syndrome. Chest 68: 727, 1975.CrossRefGoogle Scholar
  29. 29.
    Casado-Naranjo I., Cervello Donderis M.A., Liuch Bellod V., Dalli Peydro E. Reversible ischemic neurologic deficit in a patient with the Kearns-Sayre syndrome. Strooke 19: 533, 1988.CrossRefGoogle Scholar
  30. 30.
    Borggreven J.M., Daeman F.J., Bontimg S.L. Biochemical aspects of the visual processes. The lipid composition of native and hesane-extracted cattle rod outer segments. Biochim. Biophys. Acta 202: 374, 1970.PubMedCrossRefGoogle Scholar
  31. 31.
    Benolken R.M., Anderson R.E., Wheeler T.G. Membrane fatty acids associated with the electrical response in visual excitation. Science 182: 1253, 1973.PubMedCrossRefGoogle Scholar
  32. 32.
    Tinoco J. Dietary requirements and function of alpha-linolenic acid in animals. J. Prog. Lipid Res. 21: 1, 1982.CrossRefGoogle Scholar
  33. 33.
    Wheeler T.G., Benolken R.M., Anderson R.E. Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 188: 1312, 1975.PubMedCrossRefGoogle Scholar
  34. 34.
    Fein A., Payne R., Wesley Corson D., Berridge M.J., Irvine R.F. Photoreceptor excitation and adaptation by inositol 1, 4, 5-triphosphate. Nature 311: 157, 1984.PubMedCrossRefGoogle Scholar
  35. 35.
    Brown J.E., Rubin L.J., Ghalayini A.J., Tarver A.P., Irvine R.F., Berridge M.J., Anderson R.E. Myo-inositol polyphosphate may be a messanger for visual excitation in limulus photoreceptors. Nature 311: 160, 1984.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1991

Authors and Affiliations

  • A. M. Stanzial
    • 1
  • L. Bonomi
    • 2
  • C. Cobbe
    • 2
  • O. Olivieri
    • 1
  • D. Girelli
    • 1
  • M. T. Trevisan
    • 3
  • A. Bassi
    • 3
  • S. Ferrari
    • 3
  • Roberto Corrocher
    • 1
  1. 1.Istituto di Patologia MedicaUniversità di VeronaVeronaItaly
  2. 2.Istituto di Clinica OculisticaUniversità di VeronaVeronaItaly
  3. 3.Istituto di Chimica e Microscopia ClinicaUniversità di VeronaVeronaItaly

Personalised recommendations