Journal of Endocrinological Investigation

, Volume 16, Issue 7, pp 505–509 | Cite as

Effect of insulin treatment on osteocalcin levels in diabetic children and adolescents

  • M. P. Guarneri
  • Giovanna Weber
  • P. Gallia
  • G. Chiumello


To investigate bone mineral metabolism in insulin-dependent diabetes mellitus, serum osteocalcin, a marker of bone formation, was measured in 31 diabetic children at onset of disease and 15 days after metabolic improvement by insulin therapy. As a control group for osteocalcin levels we studied 31 healthy sex- and age-matched children. Mean values of serum osteocalcin at onset of diabetes were significantly lower than in control group (p<0.001), but we did not find any difference after 15 days of insulin therapy. Osteocalcin and parathyroid hormone concentrations were significantly greater after 15 days of insulin treatment than at onset of disease (p<0.001 and p<0.01, respectively). The osteocalcin levels were negatively correlated both with fructosamine and with glycosylated hemoglobin (p<0.01 and p<0.001, respectively), and positively correlated with the degree of metabolic acidosis at onset (p<0.05). Therefore we postulate that during glycometabolic imbalance there is a decrease in bone turnover that could be one of the etiological factors of diabetic osteopenia.


Osteocalcin insulin-dependent diabetes mellitus osteopenia parathyroid hormone children adolescents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levin M.E., Boisseau V.C., Avioli L.V. Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N. Engl. J. Med. 294: 241, 1976.PubMedCrossRefGoogle Scholar
  2. 2.
    McNair P., Madsbad S., Christiansen C., Faber O.K., Transbøl I., Binder C. Osteopenia in insulin treated diabetes mellitus. Diabetologia 15: 87, 1978.PubMedCrossRefGoogle Scholar
  3. 3.
    McNair P., Madsbad S., Christensen M.S., Christiansen C., Faber O.K., Binder C., Transbøl I. Bone mineral loss in insulin-treated diabetes mellitus: studies on pathogenesis. Acta Endocrinol. (Coenh.) 90: 463, 1978.Google Scholar
  4. 4.
    Shore R.M., Cheseney R.W., Mazess R.B., Rose P.G., Bargman G.J. Osteopenia in juvenile diabetes. Calcif. Tissue Int. 33: 455, 1982.CrossRefGoogle Scholar
  5. 5.
    Weber G., Beccaria L., de Angelis M., Mora S., Galli L., Cazzuffi M.A., Turba F., Frisone F., Guarneri M.P., Chiumello G. Bone mass in young patients with type I diabetes. Bone Miner. 8: 23, 1990.PubMedCrossRefGoogle Scholar
  6. 6.
    Selby P.L. Osteopenia and diabetes. Diabetic Med. 5: 423, 1988.PubMedCrossRefGoogle Scholar
  7. 7.
    Schneider L.E., Schedl H.P., McCain T., Haussler M.R. Experimental diabetes reduces circulating 1,25-dihydroxyvitamin D in the rat. Science 198: 1452, 1977.CrossRefGoogle Scholar
  8. 8.
    Frazer T.E., White N.H., Hough S., Santiago J.B., McGee B.R., Bryce G., Mallon J., Avioli L.V. Alteration in circulating vitamin D metabolites in the young insulin-dependent diabetic. J. Clin. Endocrinol. Metab. 53: 1154, 1981.PubMedCrossRefGoogle Scholar
  9. 9.
    Schneider L.E., Schedl H.P. Diabetes and intestinal calcium absorption in the rat. Am. J. Physiol. 223: 1319, 1972.PubMedGoogle Scholar
  10. 10.
    McNair P., Fogh-Andersen N., Madsbad S., Christensen M.S. Decreased serum concentration of ionized calcium in insulin-dependent human diabetes mellitus. Eur. J. Clin. Invest. 13: 267, 1983.PubMedCrossRefGoogle Scholar
  11. 11.
    Ewald U., Gebre-Medhin M., Tuvemo T. Hypomagnesemia in diabetic children. Acta Paediatr. Scand. 72: 367, 1983.PubMedCrossRefGoogle Scholar
  12. 12.
    Witt M.F., White N.H., Santiago J.V., Seino Y., Avioli L.V. Use of oral calcium loading to characterize the hypercalciuria of young insulin-dependent diabetics. J. Clin. Endocrinol. Metab. 57: 94, 1983.PubMedCrossRefGoogle Scholar
  13. 13.
    Pietschmann P., Schernthaner G., Woloszczuk W. Serum osteocalcin levels in diabetes mellitus: analysis of the type of diabetes and microvascular complications. Diabetologia 31: 892, 1988.PubMedCrossRefGoogle Scholar
  14. 14.
    Glajchen N., Epstein S., Ismail F., Thomas S., Fallon M., Chakrabarti S. Bone mineral in experimental diabetes mellitus: osteocalcin as a measure of bone remodelling. Endocrinology 123: 290, 1988.PubMedCrossRefGoogle Scholar
  15. 15.
    Hishida H., Seino Y., Taminato T., Usami M., Takeshita N., Seino Y., Tsutsumi C., Moriuchi S., Akiyama Y., Hara K., Imura H. Circulating levels and bone contents of bone gamma-carboxyglutamic acid-containing protein are decreased in streptozocin-induced diabetes-possible marker for diabetic osteopenia. Diabetes. 37: 702, 1988.CrossRefGoogle Scholar
  16. 16.
    Leon M., Larrodera L., Lledo G., Hawkins F. Study of bone loss in diabetes mellitus type 1. Diabetes Res. Clin. Pract. 6: 237, 1989.PubMedCrossRefGoogle Scholar
  17. 17.
    Hauschka P.V, Lian J.B., Gallop P.M. Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc. Natl. Acad. Sci. USA 72: 3925, 1975.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Price P.A., Nishimoto S.K. Radioimmunoassay for the vitamin K-dependent protein of bone and its discovery in plasma. Proc. Natl. Acad. Sci. USA 77: 2234, 1980.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Price P.A., Parthemore J.G., Deftos L.J. New biochemical marker for bone metabolism: measurement by radio-immunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. J. Clin. Invest. 66: 878, 1980.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Stenflo J., Suttie J.W. Vitamin k dependent formation of gammacarboxyglutamic acid. Annu. Rev. Biochem. 46: 157, 1977.PubMedCrossRefGoogle Scholar
  21. 21.
    Nishimoto S.K., Price P.A. Proof that the gamma-carboxyglutamic acid-containing bone protein is synthesized in calf bone: comparative synthesis rate and effect of Coumadin on synthesis. J. Biol. Chem. 254: 437, 1979.PubMedGoogle Scholar
  22. 22.
    Price P.A., Williamson M.K., Lothringer J.W. Origin of the vitamin k dependent bone protein found in plasma and its clearance by kidney and bone. J. Biol. Chem. 256: 12760, 1981.PubMedGoogle Scholar
  23. 23.
    Spencer E.M., Khalil M,. Tobiassen O. Experimental diabetes in the rat causes an insulin-reversible decrease in renal 25-hydroxyvitamin D3 1 alfa-hydroxylase activity. Endocrinology 107: 300, 1980.PubMedCrossRefGoogle Scholar
  24. 24.
    Christiansen C., Christensen M.S., McNair P., Nielsen B., Madsbad S. Vitamin D metabolites in diabetic patients: decreased serum concentration of 24,25-dihydroxyvitamin D. Scand. J. Clin. Lab. Invest. 42: 487, 1982.PubMedCrossRefGoogle Scholar
  25. 25.
    Ishida H., Seino Y., Tsuda K., Takemura J., Nishi S., Ishizuka S., Imura H. Effects of streptozotocin-induced diabetes on circulating levels of vitamin D metabolites. Acta Endocrinol. (Copenh.) 104: 96, 1983.Google Scholar
  26. 26.
    Weber G., Pradella C., Rimoldi R., Proverbio M.C. Study of calcium homeostasis in children with type 1 diabetes mellitus at onset. In: Chiumello G., Sperling M. (Eds), Recent progress in pediatric endocrinology. Raven Press, New York, 1983, p. 61.Google Scholar
  27. 27.
    Mc Nair P., Christensen M.S., Madsbad S., Christiansen C., Transbøl I. Hypoparathyroidism in diabetes mellitus. Acta Endocrinol. (Copenh.) 96: 81, 1981.Google Scholar
  28. 28.
    Silberberg R. The skeleton in diabetes mellitus: a review of the literature. Diabetes Res. 3: 329, 1986.PubMedGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1993

Authors and Affiliations

  • M. P. Guarneri
    • 1
  • Giovanna Weber
    • 1
  • P. Gallia
    • 1
  • G. Chiumello
    • 1
  1. 1.Istituto Scientifico Ospedale San Raffaele, Clinica Pediatrica III, Centro di Endocrinologia Infantile e dell’AdolescenzaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations