Journal of Endocrinological Investigation

, Volume 15, Issue 5, pp 369–376 | Cite as

Effects induced by olive oil-rich diet on erythrocytes membrane lipids and sodium-potassium transports in postmenopausal hypertensive women

  • R. Corrocher
  • A. Pagnan
  • G. B. Ambrosio
  • S. Ferrari
  • O. Olivieri
  • P. Guarini
  • A. Bassi
  • D. Piccolo
  • A. Gandini
  • D. Girelli


Since we have observed that mo-nounsaturated fatty acids (MUFA) enriched diet modifies red cell membrane lipids and cation transport systems in normotensive subjects, we similarly evaluated a group of hypertensive patients undergoing an analogous dietary modification. In a group of 18 moderately hypertensive women, the diet was supplemented for two months with olive oil (about 45 g/day), which replaced an equal amount of seasoning fats. Before and after this period, red cell fatty acid composition was evaluated by gas-chromatography in order to verify diet compliance: a significant increase in oleic acid was observed, while the content of saturated and polyunsaturated fatty acids remained unchanged. After olive oil, maximal rates of Na-K pump (5580±329 vs 6995±390, plt;0.001) and Na-K cotransport ( Na-COT 544±52 vs 877±46, plt;0.001: K-COT 790±76 vs 1176±66, plt;0.001), cell Na content (9.58+0.4 vs 10.61 ±0.6, plt;0.03) and passive permeability for Na (936±74 vs 1836±102, plt;0.001 ) rose significantly. Although the reduction in maximal rate of the Li-Na CT after olive oil was not significant, it was the only cation transport parameter being correlated with the variations of membrane lipids, namely negatively with UFA (r=-0.528, plt;0.05) and positively with SFA (r=0.482, plt;0.005). The change in maximal rate of Li-Na CT was also correlated with the variation of systolic and diastolic BP (r=0.50, plt;0.03). No changes in membrane lipid composition and ion transport systems were observed in a group of 13 control patients kept on usual diet over the same period. Thus, olive oil supplementation affects the lipid composition of the cell membrane in hypertension. This change is in turn associated with a modification of membrane transport activity; in addition a significant reduction of blood pressure is obtained.


Fatty acid hypertension Na-K ATPase pump Na-K co-transport Na-Li countertransport Na-K passive permeability oleic acid red blood cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Canessa M. The polymorphism of red cell Na and K transport in essential hypertension: findings, controversies and perspectives. Erythrocyte Membrane 3. Clinical and Experimental Advances. Alan R. Liss, New York, 1984, p. 293.Google Scholar
  2. 2.
    Hilton P.J. Cellular sodium transport in essential hypertension. N. Engl. J. Med. 314:222, 1986.PubMedCrossRefGoogle Scholar
  3. 3.
    Cusi O., Barlassina C, Ferrandi M., Palazzi C, Celega E., Bianchi G. Familial aggregation of cation transport abnormalities and essential hypertension. Clin. Exp. Hypertension 3:871, 1981.CrossRefGoogle Scholar
  4. 4.
    Woods J.A., Falk R.J., Pittman A.W., Klemmer P.J., Watson B.S., Namboodiri K. Increased red cell sodium-lithium countertransport in normotensive sons of hypertensive parents. N. Engl. J. Med. 306:593, 1982.PubMedCrossRefGoogle Scholar
  5. 5.
    Williams R.R., Hunt SC, Kuido H., Smith J.B., Ash K.O. Sodium-lithium countertransport in erythrocytes of hypertension prone families in Utah. Am. J. Epidemiol. 118:338, 1983.PubMedGoogle Scholar
  6. 6.
    Wiley J.S., Cooper R.A. Inhibition of cation transport by cholesterol enrichment of human red cell membranes. Biochem. Biophys. Acta 413: 425, 1975.PubMedCrossRefGoogle Scholar
  7. 7.
    Poznanski M., Kirkwood D., Solomon A.K. Modulation of red cell K transport by membrane lipids. Biochem. Biophys. Acta 330:351, 1973.CrossRefGoogle Scholar
  8. 8.
    Kroes J., Ostwald R. Erythrocyte membrane — Effect of increased cholesterol content on permeability. Biochem. Biophys. Acta 294: 647, 1971.CrossRefGoogle Scholar
  9. 9.
    Duhm J., Berh J. Rale of exogenous factors in alterations of red cell Na+-K+cotransport in essential hypertension: primary hyperaldosteronism and hyperkaliemia. Scand. J. Lab. Invest. 46 (Suppl. 180): 82, 1986.Google Scholar
  10. 10.
    Corrocher R., Ferrari S., Bassi A., Guarini P., Bertinato L, Olivieri O., Guadagnin M.L., Ruzzenente O., Brugnara C, De Sandre G. Membrane polyunsaturated fatty acids and lithium-sodium countertransport in human erythrocytes. Life Sei 41:1171, 1987.CrossRefGoogle Scholar
  11. 11.
    Heagerty A.M., Ollerenshaw J.D., Robertson D.I., Bing R.F., Swales J.D. Influences of dietary linoleic acid on leukocyte sodium transport and blood pressure. Br. Med. J. 293:295, 1986.CrossRefGoogle Scholar
  12. 12.
    Corrocher R., Steinmayr M., Ruzzenente O., Brugnara C., Bertinato L., Mazzi M., Furri C., Bonfanti F., De Sandre G. Elevation of red cell lithium-sodium countertransport in hyperlipemias. Life Sci. 36:649, 1985.PubMedCrossRefGoogle Scholar
  13. 13.
    Hunt S.C., Williams R.R., Smith J.B., Ash K.O. Association of three cation transport systems with plasma lipid in Utah subjects. Hypertension 8:30, 1986.PubMedCrossRefGoogle Scholar
  14. 14.
    Pagnan A., Corrocher R., Ambrosio G.B., Ferrari S., Guarini P., Piccolo D., Brugnara C, Opportuno A., Bassi A., Aprili F., Bertinato L., Olivieri O., Baggio G., Dal Palù C. Effects of olive oil-rich diet on serum and membrane lipids and on cation transport in erythrocytes. J. Hypertension 5 (Suppl. 5): 247, 1987.Google Scholar
  15. 15.
    Pagnan A., Corrocher R., Ambrosio G.B., Ferrari S., Guarini P., Piccolo D., Opportuno A., Bassi A., Olivieri O., Baggio G. Effects of olive oil-rich diet on red blood cell membrane lipid composition and on cation transport systems. Clin. Sci. 76:87, 1989.PubMedGoogle Scholar
  16. 16.
    Wahlefeld A.M. Triglycerides determination after enzymatic hydrolysis. In: Bergmeyer H.U. (Ed.), Methods of enzymatic analysis II. Vol IV. Weinheim, FRG Verlag Chemie, 1974, p. 1831.Google Scholar
  17. 17.
    Allain C.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 20:470, 1974.PubMedGoogle Scholar
  18. 18.
    Gidez L.I., Miller G.J., Burstein M., Slagle S., Eder H.A. Separation and quantification of subclasses of human plasma HDL by a simple precipitation procedure. J. Lipid Res. 23:1206, 1982.PubMedGoogle Scholar
  19. 19.
    Moilanen T., Nikkari T. The effect of storage on the fatty acid composition of human serum. Clin. Chim. Acta 114:111, 1981.PubMedCrossRefGoogle Scholar
  20. 20.
    Rose G., Okiander M. Improved procedure for the extraction of lipids from human erythrocytes. J. Lipid Res. 6:428, 1965.PubMedGoogle Scholar
  21. 21.
    Bartlett G.R. Phosphorous assay in column chromatography. J. Biol. Chem. 234:466, 1959.PubMedGoogle Scholar
  22. 22.
    Canessa M., Brugnara C, Cusi D., Tosteson D.C. Modes of operation and variable stochiometry of the furosemide-sensitive Na and K fluxes in human red cell. J. Gen. Physiol. 87:113, 1987.CrossRefGoogle Scholar
  23. 23.
    Canessa M., Adragna N., Solomon H.S., Connolly T.M., Tosteson D.C. Increase of sodium-lithium countertransport in red cell of the patients with essential hypertension. N. Engl. J. Med. 302:772, 1980.PubMedCrossRefGoogle Scholar
  24. 24.
    Brugnara C, Kopin A.S., Bunn H.F., Tosteson D.C. Regulation of cation content and cell volume in erythrocytes from patients with homozygous hemoglobin C disease. J.Clin. Invest. 75:1608, 1985.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Sacks F.M., Stampfer M.J., Munoz A., McManus K., Canessa M., Kass E.H. Effect of linoleic and oleic acids on blood pressure, blood viscosity and erythrocyte cation transport. J. Am. Coll. Nutr. 6:179, 1987.PubMedCrossRefGoogle Scholar
  26. 26.
    Friedman S.M. Cellular ionic perturbation in hypertension. J. Hypertension 7:109, 1983.CrossRefGoogle Scholar
  27. 27.
    Cole H.C. Erythrocyte membrane sodium transport in patients with treated and untreated essential hypertension. Circulation 63:17, 1983.CrossRefGoogle Scholar
  28. 28.
    Mahoney J.R., Ritkin N.L., McSwigan J.D., Eaton J.W. Assessment of red cell sodium transport in essential hypertension. Blood 59:439, 1982.PubMedGoogle Scholar
  29. 29.
    Edmonson R.P.S., Thomas R.D., Hilton P.J., Patrick J., Jones N.F. Abnormal leukocyte composition and sodium transport in essential hypertension. Lancet 1:1003, 1975.CrossRefGoogle Scholar
  30. 30.
    Heagerty A.M., Milner P.P., Bing R.F., Thurston H., Swales J.D. Leucocytes membrane sodium transport in nor-motensive population: dissociation of abnormalities of serum efflux from raised blood pressure. Lancet 2:894, 1982.PubMedCrossRefGoogle Scholar
  31. 31.
    Forrester T.E., Alleyne G.A.O. Sodium potassium and rate constants for sodium efflux in leukocyte from hypertensive Jamaicans. Br. Med. J. 233:5, 1981.CrossRefGoogle Scholar
  32. 32.
    Olivieri O., Negri M., de Gironcoli M., Bassi A., Guarini P., Stanzial A.M., Grigolini L., Ferrari S., Corrocher R Effects of dietary fish oil on malondialdehyde production and glutathione peroxidase activity in hy-perlipidaemic patients. Scand. J. Clin. Lab. Invest. 43:659, 1988.CrossRefGoogle Scholar
  33. 33.
    Bing R.F., Heagerty A.M., Thurston H., Swales J.D. Ion transport in hypertension: are changes in the cell membrane responsible? Cli. Sci. 71: 225, 1986.Google Scholar
  34. 34.
    Williams R.R., Hunt S.C., Hopkins P.N., Stults B.M., Wu L.L., Hasstedt S.J., Barlow G.K., Stephenson S.H., Lalouel J.M. Kuida H. Familial dyslipidemic hypertension. JAMA 259: 3579, 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1990

Authors and Affiliations

  • R. Corrocher
    • 1
  • A. Pagnan
    • 3
  • G. B. Ambrosio
    • 3
  • S. Ferrari
    • 2
  • O. Olivieri
    • 1
  • P. Guarini
    • 1
  • A. Bassi
    • 2
  • D. Piccolo
    • 3
  • A. Gandini
    • 1
  • D. Girelli
    • 1
  1. 1.Istituto di Patologia MedicaUniversité di VeronaItaly
  2. 2.Istituto di Chimica e Microscopia ClinicaUniversité di VeronaItaly
  3. 3.lstituto di Medicina ClinicaUniversité di PadovaPadovaItaly

Personalised recommendations