Skip to main content
Log in

Effects induced by olive oil-rich diet on erythrocytes membrane lipids and sodium-potassium transports in postmenopausal hypertensive women

  • Announcement
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Since we have observed that mo-nounsaturated fatty acids (MUFA) enriched diet modifies red cell membrane lipids and cation transport systems in normotensive subjects, we similarly evaluated a group of hypertensive patients undergoing an analogous dietary modification. In a group of 18 moderately hypertensive women, the diet was supplemented for two months with olive oil (about 45 g/day), which replaced an equal amount of seasoning fats. Before and after this period, red cell fatty acid composition was evaluated by gas-chromatography in order to verify diet compliance: a significant increase in oleic acid was observed, while the content of saturated and polyunsaturated fatty acids remained unchanged. After olive oil, maximal rates of Na-K pump (5580±329 vs 6995±390, plt;0.001) and Na-K cotransport ( Na-COT 544±52 vs 877±46, plt;0.001: K-COT 790±76 vs 1176±66, plt;0.001), cell Na content (9.58+0.4 vs 10.61 ±0.6, plt;0.03) and passive permeability for Na (936±74 vs 1836±102, plt;0.001 ) rose significantly. Although the reduction in maximal rate of the Li-Na CT after olive oil was not significant, it was the only cation transport parameter being correlated with the variations of membrane lipids, namely negatively with UFA (r=-0.528, plt;0.05) and positively with SFA (r=0.482, plt;0.005). The change in maximal rate of Li-Na CT was also correlated with the variation of systolic and diastolic BP (r=0.50, plt;0.03). No changes in membrane lipid composition and ion transport systems were observed in a group of 13 control patients kept on usual diet over the same period. Thus, olive oil supplementation affects the lipid composition of the cell membrane in hypertension. This change is in turn associated with a modification of membrane transport activity; in addition a significant reduction of blood pressure is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canessa M. The polymorphism of red cell Na and K transport in essential hypertension: findings, controversies and perspectives. Erythrocyte Membrane 3. Clinical and Experimental Advances. Alan R. Liss, New York, 1984, p. 293.

    Google Scholar 

  2. Hilton P.J. Cellular sodium transport in essential hypertension. N. Engl. J. Med. 314:222, 1986.

    Article  CAS  PubMed  Google Scholar 

  3. Cusi O., Barlassina C, Ferrandi M., Palazzi C, Celega E., Bianchi G. Familial aggregation of cation transport abnormalities and essential hypertension. Clin. Exp. Hypertension 3:871, 1981.

    Article  CAS  Google Scholar 

  4. Woods J.A., Falk R.J., Pittman A.W., Klemmer P.J., Watson B.S., Namboodiri K. Increased red cell sodium-lithium countertransport in normotensive sons of hypertensive parents. N. Engl. J. Med. 306:593, 1982.

    Article  CAS  PubMed  Google Scholar 

  5. Williams R.R., Hunt SC, Kuido H., Smith J.B., Ash K.O. Sodium-lithium countertransport in erythrocytes of hypertension prone families in Utah. Am. J. Epidemiol. 118:338, 1983.

    CAS  PubMed  Google Scholar 

  6. Wiley J.S., Cooper R.A. Inhibition of cation transport by cholesterol enrichment of human red cell membranes. Biochem. Biophys. Acta 413: 425, 1975.

    Article  CAS  PubMed  Google Scholar 

  7. Poznanski M., Kirkwood D., Solomon A.K. Modulation of red cell K transport by membrane lipids. Biochem. Biophys. Acta 330:351, 1973.

    Article  Google Scholar 

  8. Kroes J., Ostwald R. Erythrocyte membrane — Effect of increased cholesterol content on permeability. Biochem. Biophys. Acta 294: 647, 1971.

    Article  Google Scholar 

  9. Duhm J., Berh J. Rale of exogenous factors in alterations of red cell Na+-K+cotransport in essential hypertension: primary hyperaldosteronism and hyperkaliemia. Scand. J. Lab. Invest. 46 (Suppl. 180): 82, 1986.

    CAS  Google Scholar 

  10. Corrocher R., Ferrari S., Bassi A., Guarini P., Bertinato L, Olivieri O., Guadagnin M.L., Ruzzenente O., Brugnara C, De Sandre G. Membrane polyunsaturated fatty acids and lithium-sodium countertransport in human erythrocytes. Life Sei 41:1171, 1987.

    Article  CAS  Google Scholar 

  11. Heagerty A.M., Ollerenshaw J.D., Robertson D.I., Bing R.F., Swales J.D. Influences of dietary linoleic acid on leukocyte sodium transport and blood pressure. Br. Med. J. 293:295, 1986.

    Article  CAS  Google Scholar 

  12. Corrocher R., Steinmayr M., Ruzzenente O., Brugnara C., Bertinato L., Mazzi M., Furri C., Bonfanti F., De Sandre G. Elevation of red cell lithium-sodium countertransport in hyperlipemias. Life Sci. 36:649, 1985.

    Article  CAS  PubMed  Google Scholar 

  13. Hunt S.C., Williams R.R., Smith J.B., Ash K.O. Association of three cation transport systems with plasma lipid in Utah subjects. Hypertension 8:30, 1986.

    Article  CAS  PubMed  Google Scholar 

  14. Pagnan A., Corrocher R., Ambrosio G.B., Ferrari S., Guarini P., Piccolo D., Brugnara C, Opportuno A., Bassi A., Aprili F., Bertinato L., Olivieri O., Baggio G., Dal Palù C. Effects of olive oil-rich diet on serum and membrane lipids and on cation transport in erythrocytes. J. Hypertension 5 (Suppl. 5): 247, 1987.

    Google Scholar 

  15. Pagnan A., Corrocher R., Ambrosio G.B., Ferrari S., Guarini P., Piccolo D., Opportuno A., Bassi A., Olivieri O., Baggio G. Effects of olive oil-rich diet on red blood cell membrane lipid composition and on cation transport systems. Clin. Sci. 76:87, 1989.

    CAS  PubMed  Google Scholar 

  16. Wahlefeld A.M. Triglycerides determination after enzymatic hydrolysis. In: Bergmeyer H.U. (Ed.), Methods of enzymatic analysis II. Vol IV. Weinheim, FRG Verlag Chemie, 1974, p. 1831.

    Google Scholar 

  17. Allain C.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 20:470, 1974.

    CAS  PubMed  Google Scholar 

  18. Gidez L.I., Miller G.J., Burstein M., Slagle S., Eder H.A. Separation and quantification of subclasses of human plasma HDL by a simple precipitation procedure. J. Lipid Res. 23:1206, 1982.

    CAS  PubMed  Google Scholar 

  19. Moilanen T., Nikkari T. The effect of storage on the fatty acid composition of human serum. Clin. Chim. Acta 114:111, 1981.

    Article  CAS  PubMed  Google Scholar 

  20. Rose G., Okiander M. Improved procedure for the extraction of lipids from human erythrocytes. J. Lipid Res. 6:428, 1965.

    CAS  PubMed  Google Scholar 

  21. Bartlett G.R. Phosphorous assay in column chromatography. J. Biol. Chem. 234:466, 1959.

    CAS  PubMed  Google Scholar 

  22. Canessa M., Brugnara C, Cusi D., Tosteson D.C. Modes of operation and variable stochiometry of the furosemide-sensitive Na and K fluxes in human red cell. J. Gen. Physiol. 87:113, 1987.

    Article  Google Scholar 

  23. Canessa M., Adragna N., Solomon H.S., Connolly T.M., Tosteson D.C. Increase of sodium-lithium countertransport in red cell of the patients with essential hypertension. N. Engl. J. Med. 302:772, 1980.

    Article  CAS  PubMed  Google Scholar 

  24. Brugnara C, Kopin A.S., Bunn H.F., Tosteson D.C. Regulation of cation content and cell volume in erythrocytes from patients with homozygous hemoglobin C disease. J.Clin. Invest. 75:1608, 1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sacks F.M., Stampfer M.J., Munoz A., McManus K., Canessa M., Kass E.H. Effect of linoleic and oleic acids on blood pressure, blood viscosity and erythrocyte cation transport. J. Am. Coll. Nutr. 6:179, 1987.

    Article  CAS  PubMed  Google Scholar 

  26. Friedman S.M. Cellular ionic perturbation in hypertension. J. Hypertension 7:109, 1983.

    Article  Google Scholar 

  27. Cole H.C. Erythrocyte membrane sodium transport in patients with treated and untreated essential hypertension. Circulation 63:17, 1983.

    Article  Google Scholar 

  28. Mahoney J.R., Ritkin N.L., McSwigan J.D., Eaton J.W. Assessment of red cell sodium transport in essential hypertension. Blood 59:439, 1982.

    CAS  PubMed  Google Scholar 

  29. Edmonson R.P.S., Thomas R.D., Hilton P.J., Patrick J., Jones N.F. Abnormal leukocyte composition and sodium transport in essential hypertension. Lancet 1:1003, 1975.

    Article  Google Scholar 

  30. Heagerty A.M., Milner P.P., Bing R.F., Thurston H., Swales J.D. Leucocytes membrane sodium transport in nor-motensive population: dissociation of abnormalities of serum efflux from raised blood pressure. Lancet 2:894, 1982.

    Article  CAS  PubMed  Google Scholar 

  31. Forrester T.E., Alleyne G.A.O. Sodium potassium and rate constants for sodium efflux in leukocyte from hypertensive Jamaicans. Br. Med. J. 233:5, 1981.

    Article  Google Scholar 

  32. Olivieri O., Negri M., de Gironcoli M., Bassi A., Guarini P., Stanzial A.M., Grigolini L., Ferrari S., Corrocher R Effects of dietary fish oil on malondialdehyde production and glutathione peroxidase activity in hy-perlipidaemic patients. Scand. J. Clin. Lab. Invest. 43:659, 1988.

    Article  Google Scholar 

  33. Bing R.F., Heagerty A.M., Thurston H., Swales J.D. Ion transport in hypertension: are changes in the cell membrane responsible? Cli. Sci. 71: 225, 1986.

    CAS  Google Scholar 

  34. Williams R.R., Hunt S.C., Hopkins P.N., Stults B.M., Wu L.L., Hasstedt S.J., Barlow G.K., Stephenson S.H., Lalouel J.M. Kuida H. Familial dyslipidemic hypertension. JAMA 259: 3579, 1988.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from Ministero Université e Ricerca Scientifica e Tecnologica 60%; CNR n.91.00338.40 and Assessorato alla Sanità del-la Regione Veneto.

Abbreviations: SFA=saturated fatty acid, MUFA=monounsaturated fatty acids, PUFA=polyunsaturated fatty acids, UFA=unsaturated fatty acids, MCHC=mean corpuscolar haemoglobin concentration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrocher, R., Pagnan, A., Ambrosio, G.B. et al. Effects induced by olive oil-rich diet on erythrocytes membrane lipids and sodium-potassium transports in postmenopausal hypertensive women. J Endocrinol Invest 15, 369–376 (1992). https://doi.org/10.1007/BF03348756

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03348756

Key-words

Navigation